

Analyzing and Enforcing Security Mechanisms on Requirements Specifications

Tong Li¹, Jennifer Horkoff² and John Mylopoulos¹ ¹ University of Trento, Trento, Italy ² City University, London, UK

> The 21th International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2015) Essen, Germany March 24, 2015

Outline

- Background and Motivation
- Baseline
- Research Proposal
 - An Enriched Requirements Specification
 - Modeling Security Mechanisms
 - Analyzing the Impact of Security Mechanisms
- Evaluation
 - Expressiveness: model 20 security mechanisms
 - Effectiveness: apply the analysis approach to a HCN (Healthcare Collaboration Network) scenario
- Related Work
- Conclusion and Future Work

Background and Motivation

- Security mechanisms
 - E.g., access control, encryption, auditing, virtual private network, intrusion detection system
 - The application of security mechanisms affects system requirements specifications [Heyman2011, Okubo2012]

3

Research Plan

24/03/15

REFSO2015

- **Research Objective**: capture and enforce the impact security mechanisms impose on the system
- Research Method: investigate more than 40 security mechanisms [Scandariato2008, Fernandez2013]

Baseline

• A goal-based approach for analyzing security requirements in a holistic manner [Li2014CAiSE]

baseline for requirements specification

Baseline

- A method for seamlessly integrating security patterns into requirements analysis [Li2014PoEM]
 - Security pattern: specifies proven security solutions (security mechanism) to known security problems
 - Model textual security patterns in contextual goal models to support the selection and application of security patterns
 - Context \rightarrow Domain property
 - Problem \rightarrow Goals
 - Solution (Security mechanism) \rightarrow Tasks

missing the

impact

analysis

Research Proposal

An Enriched Requirements Specification

- Elements from previous work[Li2014CAiSE]:
 - Goals (G), softgoals (SG), tasks (T), domain assumptions (DA), refinements (RE) and contributions (CON)
- New Element for capturing impact of mechanisms:
 - Task constraints (*TC*)
 - task invariants
 - precondition
 - postcondition

• R = {*G*, *SG*, *T*, *DA*, *REF*, *CON*, *TC*}

8

An Example of the Initial Requirements Specification

24/03/15

REFSO2015

9

Requirements Specification

An Enriched Requirements Specification

- Capture the semantics of Tasks
 - Expanded Attributes: subject, operation, object
- Attributes Elicitation
 - Manually specify
 - Leverage NLP techniques for automation [Li2011] g4: Data exchange between HCN and Publisher IT system is enabled

t4: Generate publications Clinical publications to HCN hub

t3: Receive the clinical information from its IT system

REFSO2015

Modeling Security Mechanisms

- Concepts:
 - Security Task
 - A detailed function performed by a system to achieve certain security goals
 - Assumption
 - An expected state of affairs, under which the security mechanism can be applied correctly
 - Security Constraint
 - A constraint that imposes a specific type of impact on specific tasks
 - Quality Influence
 - A positive/negative influence on system qualities

Security Mechanism Example-Virtual Private Network(VPN)

A Process for Applying Security Mechanism

Example – Application of the VPN Mechanisms

Identify Constrained Tasks

Identification rules for encryption constraints

 $\begin{aligned} Rule_1: constrain(ST,T) \leftarrow has_operation(T,OP) \\ \land transfer_operation(OP) \land has_object(T,O) \land protect(ST,O) \\ \land has_constraint(ST, encryption_constraint) \end{aligned}$

Data Schema

Word Semantic Hierarchy

Example – Identify Constrained Tasks

Security Constraints	impact	Enforcement	
Encryption	the encryption security task should be done	add(performed(st),	
Constraint	before the constrained task.	t.precondition)	
Authentication	the authentication security task should be	add(performed(st),	
Constraint	done before the constrained task.	t.precondition)	
Permission	the authorization security task should be	add(performed(st),	
Constraint	done before the constrained task.	t.precondition)	
Centralization Constraint	the constrained task is replaced by the cen- tralized security task.	replace(t, st)	
Protection Con- straint	the protection security task should be en- forced to cover the whole execution period of the constrained task.	add(cover_by(st), t.invariant)	
Auditing Constraint	the auditing security function should be done arter the execution of the constrained task.	add(need_to_perform(st), t.postcondition)	

Analyze Quality Influences

- Correlate softgoals
- Assess uncorrelated softgoals
- Reevaluate influenced requirements alternatives

Evaluate the Conceptual Model

 Model 20 security mechanisms [Scandariato2008, Fernandez2013] using the proposed conceptual model

Table 4: Statistics of applying the conceptual model to 20 security mechanisms

_	Security Task	Assumption	Security Constraint	Quality Influence
Total	89	15	27	148
Average	4.45	0.75	1.35	7.4

19

Evaluate the Impact Analysis

- Analyze the impact of the VPN mechanism on the HCN (Healthcare Collaboration Network) Scenario
 - Input:
 - Scenario: 23 goals, 8 softgoals, 67 tasks, and 75 refinement links
 - VPN mechanism: 9 security tasks, I assumption, 2 security constraints, and 8 quality influences
 - Output:
 - 12 tasks are constrained by the VPN mechanism
 - 2 tasks constraints and 3 quality influences are applied to each constrained task

Identified Constrained Tasks

Evaluation

Conclusions

- Present a conceptual model which characterizes security mechanism from a requirements viewpoint
- Propose a systematic way to analyze and enforce the impact of a security mechanism imposed on system requirements.
- Initially evaluate the proposed approach using a HCN scenario
- A prototype tool has been developed to support the analysis process

Future work

- Generalize our approach to other mechanisms (e.g., performance mechanisms)
- Investigate more security mechanisms to further check the coverage of the proposed security constraints
- Carry out more case studies for better evaluation
- Involve practitioners into the evaluation of the approach

Thank You!

Contact: tong.li@disi.unitn.it

24/03/15 REFSQ2015