

Using Tools to Assist Identification of Non-Requirements in Requirements Specifications – A Controlled Experiment

REFSQ'18, Utrecht, The Netherlands

Jonas Paul Winkler, Andreas Vogelsang DCAITI, Technische Universität Berlin

March 20, 2018

Background – Requirements vs Information

Why is this important?

1) Test case creation

2) Document change management

Background – Classifying Requirements

- Explicit labelling of requirements specification content elements at our industry partner ("object type")
- Quality reviews: requirement documents are manually inspected for defects
 - Common quality criteria: correct, unambiguous, complete, verifiable...
 - Also: correct labelling regarding object type
- Manual labelling is time-consuming and error-prone

Our goal:

Assist requirements engineers in verifying correct labelling of requirements and non-requirements

Background – Automatic Classification

• We did: Integration into a tool that issues warnings on incorrectly labelled items ("defects")

Main question: Does using such a tool provide benefits?

Winkler, Jonas P.; Vogelsang, Andreas (2016): Automatic Classification of Requirements Based on Convolutional Neural Networks. In : 3rd IEEE International Workshop on Artificial Intelligence for Requirements Engineering (AIRE). Beijing.

Research Questions

- 1. Does the usage of our tool enable users to detect more defects?
- 2. Does the usage of our tool reduce the number of defects introduced by users?
- 3. Are users of our tool prone to ignoring actual defects because no warning was issued?
- 4. Are users of our tool faster in processing the documents?
- 5. Does our tool motivate users to rephrase requirements and information content elements?

Experiment Design

- Two-by-two crossover study with students
- Students search and correct defects in a given SRS
- Control Group: Students without tool (manual review)
- Treatment Group: Students with tool (tool-assisted review)

	Group 1 Group 2	
Session 1 (SRS #1)	Manual	Tool-assisted
Session 2 (SRS #2)	Tool-Assisted	Manual

• Compare the performance of students from both groups

Experiment Materials

• Excerpts from actual work-in-progress SRS

Document Name	Total Elements	Accuracy
Wiper Control	115	82.6%
Window Lift	261	75.8%
Hands Free Access	147	85.0%

- Size reduced to fit our experiment schedule
- Anonymized names as requested by our industry partner
- Determined true object type of all content elements
- Experiment was repeated after publishing
 - Presented in paper: Wiper Control, Window Lift
 - Performed after publishing: Wiper Control, Hands Free Access

Evaluation Metrics & Hypotheses

• Defect Correction Rate:

$$DCR = \frac{Defects \ Corrected}{Defects \ Inspected}$$

• Defect Introduction Rate:

$$DIR = \frac{Defects \ Introduced}{Elements \ Inspected}$$

• Unwarned Defect Miss Rate:

$$UDMR = \frac{Unwarned \ Defects \ Missed}{Unwarned \ Defects \ Inspected}$$

• Time Per Element:

$$TPE = \frac{Total \ Time \ Spent}{Elements \ Inspected}$$

• Element Rephrase Rate:

$$ERR = rac{Elements Rephrased}{Elements Inspected}$$

Result Overview

- Total number of students per experiment:
 - ~25 (experiment #1), ~20 (experiment #2)

Document	Manual group		Tool-assisted group	
	# reviews	# elements	# reviews	# elements
Exp #1 (Wiper Control)	7	506	7	749
Exp #1 (Window Lift)	4	772	3	435
Exp #2 (Wiper Control)	5	575	4	460
Exp #2 (Hands Free)	4	588	5	691
Total	20	2441	19	2335

Defect Correction Rate

Defect Introduction Rate

Unwarned Defect Miss Rate

Time Per Element

Element Rephrase Rate

Summary of Results

- **RQ1**: Users of our tool detect more defects, given that the accuracy is high enough.
- **RQ2**: Less defects are introduced when our tool is used.
- **RQ3**: Users are more likely to miss unwarned defects.
- **RQ4**: On our group of students, time did not improve significantly.
- **RQ5**: Students were not inclined to rephrase more elements when the tool was used.

Threats to Validity

- Construct validity
 - Number of Participants
 - Definition of gold standard
- Internal validity
 - Maturation
 - Communication between groups
 - Time limit
- External validity
 - Students are no RE experts

Summary & Future Work

- Tool support enables users to find more defects
- Repeated tool usage may also improve review time (maturation)
- Tool usefulness largely depends on classifier accuracy
- Future Work
 - Collect more data points
 - Repeat experiment with RE experts

Thank you.

jonas.winkler@tu-berlin.de