
Tanja E.J. VosestT *

Testing without
requirements?

REFSQ 2018, Utrecht, The

Netherlands

Testing at the GUI Level
! GUI is where all functionality comes together

! Interacts with the underlying code

! The whole system can be executed by means of the GUI

! Integration / System Testing

2

Testing at the GUI Level

!Most applications have GUIs

!Computers, tablets, smartphones….

!Even safety critical applications

3

Testing at the GUI Level

! Faults that arise at UI level are important

!These are what your client finds

!GUI tests from their perspective!

4

What is a GUI?

Contains graphical objects w, called widgets

! Menus, textboxes, buttons, scrollbars

5

5

Widgets
form a hierarchy

the widget-tree

6

Window

Button Menu Slider

Media Playback Audio V.. S.. T.. V.. Help

Widgets have properties p

which have values v at run-time.

7

Window

Button Menu Slider

Media Playback Audio V.. S.. T.. V.. Help

role: Slider

enabled: false

title: “Volume slider”

x: 120

y: 200

width: 140

...

role: MenuItem

enabled: true

title: “Help"

x: 40

y: 20

width: 80

...

role: Button

enabled: true

title: “volume off”

x: 120

y: 200

width: 140

...

GUI state

! The widget tree

! + the values of the properties of each widget

8

GUI action

! Users can exercise actions (click, type, drag,
drop,…)

! These cause a state change

click

click

Window

Button Menu Slider

Media Playback Audio V.. S.. T.. V.. Help

role: Slider

enabled: false

title: “Volume slider”

x: 120

y: 200

width: 140

...

role: Button

enabled: true

title: “volume off”

x: 120

y: 200

width: 140

...

Window

Button Menu Slider

Media Playback Audio V.. S.. T.. V.. Help

role: Slider

enabled: true

title: “Volume slider”

x: 120

y: 200

width: 140

...

role: Button

enabled: true

title: “volume on”

x: 120

y: 200

width: 140

...

click

What is GUI testing

! Sequences of GUI actions

! Click, drag, drop, type

! Provide inputs where
needed (e.g., filling text
fields)

! The test oracle

! The correct states after
execution of each action

10

Specify oracle

Specify test
sequences

Together they test a requirement

What is

GUI testing

11

Step 1

Open MS Word

Step2

Click on menu View

Step 3

Click on Media Browser

Step 4

Select a picture and drag into

the document

Specify oracle

Specify test
sequences

After each step:

! No failure has occurred

! No error message has popped-up

After last step:

! The picture is in the doc

12

Step 1

Open MS Word

Step2

Click on menu

View

Step 3

Click on Media

Browser

Step 4

Select a picture

and drag into the

document

MS W

13

Step 1

Open MS Word

Step2

Click on menu

View

Step 3

Click on Media

Browser

Step 4

Select a picture

and drag into the

document

14

Step 1

Open MS Word

Step2

Click on menu

View

Step 3

Click on Media

Browser

Step 4

Select a picture

and drag into the

document

15

Step 1

Open MS Word

Step2

Click on menu

View

Step 3

Click on Media

Browser

Step 4

Select a picture

and drag into the

document

i ti

Manual testing

! Tedious

! Executing the same clicks
over and over again

! Tiresome and boring

! Rerunning the same tests after
changes to the SUT

! Filling the same forms over
and over again

! Regression testing

! Error prone

! Costly

16

17Need to

automate

State of practice: make scripts

18

Maintenance

Execute

Develop Scripts

oracles

test sequences

Capture & Replay

Visual testing

Capture & Replay

! Tools Captures user interaction with the UI

! Records a script

! That can be automatically Replayed

! Examples

! Open source

! Selenium

! Abbot

! ….

! Commercial

! QF-Test

! Rational Functional /Robot Tester (IBM)

! ….

19

Capture & Replay

20

Capture & Replay

! Advantages

! Simple and easy

! Disadvantages

! Scripts break as GUI changes

! Maintenance problem

! These are huge problems

! GUIs change all the time

! Requirements too!

21

Visual testing (VGT)

! Based on image recognition

22

Visual testing

! Easy to understand

! Hardly no programming skills needed

! Solves part of maintenance problem

! Robust against some changes

! But not all

!Move Media Browser within same menu: YES

!Move Media Browser to another menu: NO

!Change the icon: NO

! Studies show maintenance still an issue

23

Our contribution:

!Scriptless

!What is not there does not need to be

maintained

!Departs from random testing

! Immediately start testing without requirements

24

estT *

OH
YEAH!

25
How?

Current state and actions

Select action

Execute to go to new state

28

29
How?

READY

PATH to SUT

POWERPNT.exe

SET

undesired

processes

undesired

actions

32

TEST

We can start automated testing

!Immediately (minimal set-up)

!No scripts

!No maintenance here
! The widget tree is extracted in each new state

! If the state is different, so is the widget tree

33

100% Automated online oracles

! Crashes
! Hangs

Verdict oracle_Crash (State state){

if(!state.get(IsRunning,false))

return new Verdict("System crashed!");

}

Verdict oracle_Responsiveness (State state){

if(state.get(NotResponding, true))

return new Verdict("System not responding!");

}

3533355

! Online oracles for suspicious titles and outputs
! Specify them with a regular expressión

Regular
expressions

Oracle – Suspicious titles
(under the hood)

Verdicts oracle_SuspiciousTitles(State state){

verdicts = new Verdicts():

String regEx = settings().get(SuspiciousTitles);

// search all widgets for suspicious titles

for(Widget w : state){

String title = w.get(Title, "");

if(title.matches(regEx)){

verdicts.add(new Verdict(“suspicious title..”);

}

return verdicts;

}

38333888

ClaveiCon

! Spanish SME

! ERP system

! Written in Visual Basic

! Microsoft SQL Server 2008 database

! Targets the Windows operating

systems.

TESTAR

Preparation 26 hour

Testing 91 hour

Post testing 1,5 hour

Critical faults 10

SOFTEAM

FDR =
!"# $% &'"()* %$"!+

!"# $% ,!-./).+ &'"()*
0 100%

! French and large company

! Backend system for virtualization

! Web GUI

! We could re-inject existing faults

TESTAR Manual

Preparation 40 hour 36 hour

Testing 77 hour 1 hour

Post testing 3,5 hour 2 hour

FDR 61% 83%

Code coverage 70% 86%

TESTAR Manual

Preparation 44 hour 43 hour

Testing 51 hour 6 hour

Post testing 5 hour 2 hour

Critical faults 4 0

Functional

coverage

80% 73%

! Dutch cooperation

! Web GUI

! System for managing the

assignment of train platforms

Beside these

! Microsoft office suite

! Bitrix 24
! Test the test tool TESTONA (eclise based)
! Over 10 web applications of Spanish companies
! 12 students currently working on it
! Several companies doing proof of concepts

!"#$%&"'"()*

!"#$%&"'"()*

+"*)

,$%)" +"*)

,$%)"

How does it change testing?

44
How?

Online state oracle

Verdicts oracle_ImagesWAI(State state) {

verdicts = new Verdicts():

for(Widget w : state){

Role role = w.get(Tags.Role);

if (role.equals("UIAImage") && title.isEmpty())

verdicts.add(new Verdict("Not all images have an

alternate textual description");

}

return verdicts;

}

46
Offline oracles: Query the graph database

Application/Domain

specific oracles

Need to be programmed/specified

Oracle problem

COMPLEXITY

EFFECTIVITY

We cannot avoid making oracles manually

TESTAR shares this problem with ALL
automated approaches

vs

estT *
ar.org

!"#$%&"'"()*

!"#$%&"'"()*

+"*)

,$%)" +"*)

,$%)"

How does it change testing?

How is the test effort distributed

!"#$%&'

(#!()$*!#

!"#$%&'

+,*$-#

$*"(.,#)+,

/#0#-+"

(#!(!$,%"(!

1*%2(*%2*2$# *.(+1*(#/

(#!()#3#$.(%+2

How can change testing?

!"#$%&'

(#!()$*!#

!"#$%&'

+,*$-#

$*"(.,#)+,

/#0#-+"

(#!(!$,%"(!

1*%2(*%2*2$# *.(+1*(#/

(#!()#3#$.(%+2

estT *

Random testing

“Necesary final step in the testing activities”

T. A. Thayer, M. Lipow, and E. C. Nelson. Software
Reliability. North Holland, Amsterdam, 1978.

In the
70s

“Probably the poorest testing method”

Glenford Myers, The Art of Software Testing.
New York: Wiley, 1979.

“Valuable test case generation scheme”

E. Girard and J.C. Rault, A Programming Technique
for Software Reliability, IEEE Symposium on Computer
Software Reliability, 1973

Use partition testing

!"

!#

!$

!%

!&

!

In the
70s

Use domain knowledge of the SUT to partition

Group together similar test cases
Choose one

Random testing

Duran and Ntafos (1984):

simulation and experiments

showing random better

than systematic partition

testing.

Hamlet and Taylor (1988):
more experiments
showing the same

In the
80s

Counterintuitive

Random testing

! Why do random testing and systematic testing seem to be

almost on par?

! What are the properties of random testing?

! When is random testing more effective than partitioning

and the other way around?

In the
80s

Counterintuitive

Böhme and S. Paul (2016)

For automated GUI testing…..

! Generating test case is:

! Specification

! Capture (or automate with script)

! Maintenance!!

! And random selection gave us quite good
results on the software we tested …....

! Can we do better?

How can we find more faults?

! Some test cases might be more likely to reveal faults

! Don´t pick at random, but try to optimize criteria!

! What criteria?

Where can we find faults?

! Surrogate measures

! We cannot measure %of faults found

! We measure something we believe, hope or have
shown to be correlated to that attribute.

! Coverage

! Diversity

! Novelty

Let the testing
tool learn by
itself how to
test better!!

Surrogate measures

! as many different actions as possible?

! make large call trees?

! visit as many different states as possible?

! make long sequences?

! find novel states?

! We need to investigate many more

Q-learning

Ant colonies

Evolutionary
algorithms

Evolutionary
algorithms

Machine Learning (Q-learning)

! sets ! of possible states

! sets " of possible actions

! description #$of the effect of action in a state

! %& ' () * '

! state + then select an action from a , A that
causes a transition to a next state +-

! reward function .& ' () * /

find a policy 0which maximizes the reward by
selecting an appropriate action in each state

Rewards

! Set ! of possible states the SUT can be in

! For all " # $% we have sets &" ' & of actions

! We focus is on exploration of the GUI

! We reward actions (with low execution count)*
+" # $% (# &", - "% (. /-0(1 %)* 2(3 . 4567283 % 9:;<=>?@<

!-learning algorithm

Learn Q

Use Q for selection

Ant Colony Optimization

! Collectively ants can solve complex tasks

! Ants communicate using pheromones

! They lay this on their path

! Pheromone trail strength accumulates when multiple ants use a path

! Other ants go where there is good pheromone strength

Ant Colony Optimization

! We have a population of ants

! Set of choices !"""(= actions)

! The ants generate trails (= test sequences)

! By choosing #$according to pheromone
values %&""""""""""(= selection criteria)

! Choices (= actions) that appear in “good”
trails (= max call tree) accumulate
pheromones

EvaluationCrossover

Initial
Population

Result

Terminate?

Individuals

Fitness

Test Outputs
- Coverage

- Failures
- States
- Etc.

Calculate

Mutation

Selection

Evolve action selection rules

estT *

IF-

THEN

pic

k

any

true

IF-THEN-ELSE

pic

k

butto

n

>

num_butto

ns

num_textfiel

ds

pic

k

text

field

any

1st

Action selection rules

Crossover

select

select crossoverr

Mutation

select

EvaluationCrossover

Initial
Population

Result

Terminate?

Individuals

Fitness

Test Outputs
- Coverage

- Failures
- States
- Etc.

Calculate

Mutation

Selection

Evolve action selection rules

estT *

TESTAR towards 2025
! Let the testing tool learn itself how to test!

! Use different machine learning algorithms (action
selection/oracles)

! Define more surrogate measures

! Learn from what the tool tests

! Show that surrogate measures work

! Relate them to (type of) failures

! Extract models to aid exploratory testing

! Improve visualisation

! More formal testing theory

! Know better whether we have done well

! Reduce the human oracle cost:

! Automate as much as posible all other test tasks

! Make it as easy as possible for the tester

TESTAR Training @ TNO

! 15 and 16th of May 2018

! TNO in Groningen

! Training, hands-on and helpdesk!

! Interested?

! Send me an email.

estT *

! !"#$%!"#$%&'()*(+,-&,.

! &!'!"/((0!11222-()*(+,-&,.1

! 3456"47"&$!"())*+,,-#.!'//01./",)//%1)!2)#3

!)!%!*(/4!,&(#)2#**!"89:";<="<>?"<?>"

