

Samedi Heng, samedi.heng@uclouvain.be Université catholique de Louvain, Belgium.

As a new presenter at the REFSQ, I want to have a guideline for the presentation format, so that I can manage the contents and time to meet the quality of the conference.

As a participant at the REFSQ, I want to get updated about the program, so that I can better plan my participation.

User Story

https://www.thoughtworks.com/insights/blog/how-usercentered-design-can-put-user-stories-proper-context

- Proposed by Kent Beck in eXtreme Programming (XP).
- 3Cs: Card, Conversation, and Confirmation.
- A text of maximum of two lines written from point of view of end-users.
- The most used requirements artifacts in Agile Methods.

http://agilecomplexificationinverter.blogspot.be/2013/11/elements-of-effective-scrum-task-board.html

Rationale Tree: a Visual Representation of User Stories Set

 Graphically model user stories set, so that we can visualize and analyze user stories (inter)dependencies.

Rationale Tree

Unified User Story Template: The meta-model

- User Stories are written by following a template:
 - But, too many templates have been proposed
 - And, lack of well-defined definition
- As *[WHO]*, I want *[WHAT]*, [so that *[WHY]*]

Unified User Story Template: Adopted semantics

- A **role** is an abstract characterization of the behavior of a social actor within some specialized context or domain of endeavor.
- A **hard-goal** is a condition or state of affairs in the world that the stakeholders would like to achieve.
- A **soft-goal** is a condition or state of affairs in the world that the actor would like to achieve. But unlike a hard-goal, there are no clear-cut criteria for whether the condition is achieved, and it is up to the developer to judge whether a particular state of affairs in fact achieves sufficiently the stated soft-goal.
- A **task** species a particular way of attaining a goal.
- A **capability** represents the ability of an actor to define, choose, and execute a plan for the fulfillment of a goal, given certain world conditions and in the presence of a specific event.

Rationale Tree: i* framework graphical notation

Rationale Tree: Building Process 2 DRIVER Dimension Element D C Type propose ride WHO As a DRIVER Role to go from A to WHAT I want to register to the service Task B. WHY Hard-goal so that I can propose ride to go from A to B register to the WHO Role As a DRIVER service WHAT I want to propose a ride from A to B with the price location and time of Task departure, and number of seats available WHO As a DRIVER Role propose a ride from A to B with the price location and time of departure, and WHAT I want to log in to the platform Capability WHY so that I can register to the service Task number of seats available WHO As a DRIVER Role register to the WHAT I want to select the ride characteristics Capability service WHO As a DRIVER Role WHAT I want to confirm the proposal Capability loa in to the WHO As a DRIVER Role platform WHAT I want the RIDER to be satisfied of my service Soft-goal be satisfied of sélect the ride confirm the my service characteristics proposal Driver 3 Propose a ride Rider satisfied of to go from A to B the driver service Propose a ride to go from A to B with the price, the location and the time of departure, and number of seats available Register to the Confirm service Proposal Means-end link Contribution link(+,-) Hard-goal Task Role Role Decomposition link Role Boundary Soft-goal Capability Log in to the Select appropriate Select ride platform service characteristics

RQ1: How easy a lambda modeler is able to build a consistent Rational Tree?

RQ2: What are the necessary conditions to provide a lambda modeler the ability to build a consistent Rationale Tree?

KU LEUVEN

On Modelers Ability to Build a Visual Diagram from A User Story Set: A Goal-Oriented Approach

Yves Wautelet, Mattijs Velghe, **Samedi Heng,** Stphan Poelmans, and Manuel Kolp

Utrecht, Mars 22, 2018.

Feasibility study process

- Two case studies: Carpooling and Book Factory
- Data collection: 21 Business Students, 35 IT Students, 13 Researchers

Assignment and Measured Variable of the Feasibility Study

- Background
- Theoretical understanding
- 5-step experimentation:
 - **1**. Identification of all elements within the WHO dimension of the US;
 - 2. Identification of all elements within the WHAT and WHY dimension of the US;
 - **3.** Identification of the appropriate concept or tag for each element within the WHAT and WHY dimension of the US;
 - 4. Graphical representation (and linking) of the US' WHAT and WHY elements;
 - 5. Identification and representation of other links between the US elements.
- Difficulty in performing each step

Assignment and Measured Variable of the Feasibility Study

o Step 1

US 1	As an owner, I want my clients to be able to place orders online so that the customer-friendliness of our services increases.				
US 2	As a client, I have to complete an order so that I can place it online.				
US 3	As a client, I need to fill my 'online cart' with products.				
US 4	As a client, I need to pay my invoice, so that I can complete an online order.				
US 5	As system component, I need to calculate the total amount of the order, so that the invoice can be paid.				
US 6					
US 7	As a system component, I need to process payments on the Ogone-payment platform so that the payment is secured.				

<u>Step 1:</u> Identify all elements from the WHO-dimension (i.e. swimlanes in the model) from the different US.

Assignment and Measured Variable of the Feasibility Study

• Steps 2 and 3

-		Step 2 (Element)	Step 3 (Modeling construct)
	WHAT	Place orders online	Hard_Goal
US 1	WHY	Increased user friendliness	Soft_Goal
	WHAT	complete au order	Task
US 2	WHY	place chiles online	Capitality
	WHAT	Fill Confisive conducts products	Hund-Goal
US 3	WHY		
	WHAT	Pay invorice	r tusk
US 4	WHY	complete an online order	Toolalk.
	WHAT	Calulity Total amount	Tusk
US 5	WHY	invoice can be paid	soft Goal 2
	WHAT	payorder online	Tauls
US 6	WHY	invoire is prid	soft 50 al
US 7	WHAT	process pry-et on The Valore pryst plante.	Tark.

Assignment and Measured Variable of the Feasibility Study

• Steps 4 and 5

Results: Participants' Background

Table 7.3 Expertise of participants with i* framework.

🗮 I can consider myself an expert in this topic

Table 7.4 Expertise of participants with user story.

🕆 I can consider myself an expert in this topic

Feasibility study: Exercises

- As a presenter at the REFSQ,
 I want to know about the hotel information as soon as possible,
 so that I can book for my hotel.
- As a presenter at the REFSQ,
 I want to ask for research fund from my university,
 so that I can book for my trip.

Feasibility study: Results of Case 1

Elements in the WHAT- and WHY-demension of the US in Case1:

US2 WHAT Propose a ride from A to B with the price, location and time of departure, and number of seats available

US4 WHAT

WHY

WHY

US3 WHAT Book a ride

_

Get ride from A to B WHY B

HY Book a ride from A to B

Login

Feasibility study: Results of Case 2

		_		Busine	ss stud				IT stud	lents				Resear		
	10	*	pability Har	A SOL	ooal No	DES AN	- Car	ability Har	o goal	QOS NO	DE ST	, Car	ability Har	ADD SOT	goal Not	prosent
Case	2		T													
US2	WHAT 85,7%		1			-	27,2%				75,0%		16,7%			
US3	WHY 4,8%	4,7%	81,0%		9,5%	9,0%	3,0%	66,7%	6,1%	15,2%		9,1%	90,9%	 		
000	WHAT 52,4%	42,8%		4,8%	1	42,4%	36,4%	9,1%	12,1%	1	58,3%	25,0%	16,7%	1		
	WHY 4,7%		4,8%		90,5%			·			8,4%		8,3%		83,3%	
US4					i		1	1	1	1		i	 	 		
	WHAT 66,7%	1	1				18,8%				91,7%		1	 		
	WHY 52,4%	4,7%	42,9%	i	İ	25,0%	18,8%	50,0%	6,2%	İ	50,0%	16,7%	33,3%	İ	İ	
US5	WHAT 52,4%	47 6%				71.0%	25,0%	2 104		1	41,7%	50.0%	1	6,3%		
	WHAT 52,4%		76,2%				1	41,9%	6.5%	1	27,3%		36,4%	-		
US6	20,070		1		 	,			,	0,270	2.1,070	,				
	WHAT 47,6%	42,9%	9,5%			57,6%	36,3%	6,1%		 	63,6%	27,3%	9,1%	1 1 1		
	WHY 14,2%	9,5%	66,7%	4,8%	4,8%	15,6%	12,5%	65,6%	6,3%		18,2%	9,1%	36,4%	36,4%		
US7				1			1	1	1			1	1	 		
	WHAT 47,6% WHY	42,9%	9,5%	100%	 	50,0%	37,5%	9,4%	100%		45,5%	54,5%	 	100%		

legend: Highest occurrence within the sample in question

Elements in the WHAT- and WHY-demension of the US in Case2:

US5 WHAT	Calculate the total amount of the order
ne WHY	The invoice can be paid
with products US6 WHAT	Pay my order online
WHY	The invoice is paid
US7 WHAT	Process payments on the Ogone-payment platform
e order WHY	The payment is secured
	ine WHY with products US6 WHAT WHY US7 WHAT

Global performance of the model: Qualitative approach

• Business Students: Rather Success

- Model user stories separately
- Fail in identifying elements in user stories set
- Having knowledge in user story can produce a better model
- Require more theoretical understanding
- Process-Oriented
- IT Students: Fail in overviewing the 'global model'
 - Isolate elements without any link
 - No dependency
 - Technical background influence their model
- Researchers: Produce a higher quality model
 - Model more elements
 - Decompose element in to sub-element
 - Try to identify and modeling new link out side the scope
- Modeling Errors
 - Decompose Capability in to Task
 - Links are not use properly (e.g., means-end)

Global performance of the model: Qualitative approach

Number of Elements and Links Models in Cases 1 and 2

Global performance of the model: Quantitative approach

Global performance of the model: Quantitative approach

Evaluation criterion	Allocated scores	Maximum score			
		Case 1 (4 US)	Case 2 (7 US)		
Completeness	1 point per modeled element	8 points	14 points		
Consistency	0.5 points per consistently modeled element	4 points	7 points		
Accuracy	4 points per correct link (only 1 point if the wrong type of link is used)	16 points	32 points		
Global quality	27.5	10 points	20 points		

Global Score = ((Case1/3.8) * 0.3 + (Case2/7.3)*0.7) (a 10-based score)

(a) Descriptive statistics of the global score.

	Business Students	IT Students	Researchers
Average	6.20	5.50	6.60
Median	6.60	5.30	6.50
Minimum	2.90	3.60	4.40
Maximum	8.30	7.40	8.60

(b) Averages Scores on Case 1 and 2.

Sample	Case 1	Case 2		
Groupe	Case I			
Business				
Students	6.30	6.20		
IT Students	5.60	5.40		
Researchers	7.20	6.30		

Improvement for Building a consistent Rationale Tree with CASE Tool

- Rationale Tree Validity: Model checker;
- Completeness Aspect:
 - Provide the ability to add missing elements;
 - Provide a process view (Task → sub-process and capability → activities).
- Constraint Checking: use the clustering algorithms.

Conclusion

- There are discord in interpreting WHAT and WHY dimension:
 - Element can be interpreted in several ways;
 - Lack of understanding (e.g., task vs. capability).
- Participants were able to produce an acceptable model;
- Participants focused on process oriented;
- We are trying to apply our approach in large US set in professional IT context.

References

- Yves Wautelet, Samedi Heng, Manuel Kolp, Isabelle Mirbel: Unifying and Extending User Story Models. CAiSE 2014: 211-225.
- Yves Wautelet, Samedi Heng, Manuel Kolp, Isabelle Mirbel, Stephan Poelmans: Building a rationale diagram for evaluating user story sets. RCIS 2016: 1-12.
- Yves Wautelet, Samedi Heng, Diana Hintea, Manuel Kolp, Stephan Poelmans: Bridging User Story Sets with the Use Case Model. ER Workshops 2016.
- Yves Wautelet, Samedi Heng, Soreangsey Kiv, Manuel Kolp: User-story driven development of multi-agent systems: A process fragment for agile methods. Computer Languages, Systems & Structures 50: 159-176 (2017).