3/23/2018




3/23/2018

promote participation

Name, Organization, Responsibilities and Interests




3/23/2018




3/23/2018

Group 1b poor regts

are avery bad idea




3/23/2018

Review




9.

Purpose:

To identify current, but unnecessary, hazards to self-driving guidance
(SDG) software and suggest mitigations.

Scope:

Safety of the guidance software.
Neither the sensor processing software nor the effector control software is
included in this initiative.

Candidate hazards for requirements quality and public safety:

SDG software will be at least an order of magnitude more complex than any embedded
automotive software in production use today.

As is well known to [some] software engineers (but not to the general public), by far the
largest class of problems arises from errors made in the eliciting, recording, and
analysis of requirements. [2007 National Research Council report on Software for
Dependable Systems, page 40]

Most US software engineers have never taken a requirements course. Only four of the
“top 25” software engineering colleges in the US teach such a course. It is likely that
most embedded software developers, some of whom are EEs and system engineers,
have never taken a requirements course either.

Most software engineers, system engineers, and embedded software developers do not
understand the nature of software quality requirements i.e., requirements for safety,
security, reliability, and understandability. They do not know how to specify, achieve,
nor verify them.

In the US, regulators of autonomous vehicles (AVs) know less about software
requirements than software developers.

There are more than 40 companies worldwide “racing” to create components and
vehicle guidance software with a poor understanding of software requirements in
general and software quality requirements in particular.

While the potential benefits of AVs are very desirable (i.e., the ends), risks in the current
competitive development approach (i.e., the means) are significant and unnecessary.
When manual tasks are automated by a team, a detailed glossary is essential.
Otherwise, something worse than a “tower of babel” is created within the team. The
same words will have many different meanings. For example, the meaning of “erratic
driving of the preceding vehicle” must be defined in detail along with actions to take
when detected.

Having more than one (1) glossary, (2) set of hazard analysis results, and (3) set of
basic SDG requirements is dangerous.

10. Competitive requirements suggest unsafe cultures.
11. An industry-supported edge-case simulator for software verification will also increase

safety.



12.People will die needlessly, especially early adopters, without industry-consensus work-
products because significant confusion will be added to the significant complexity of this
task.

13. The volume of early deaths may endanger acceptance of the technology and thus its
benefits would be lost or delayed due to risky development tactics.

Candidate mitigations:

1. Encourage industry to cooperate in the development of industry-consensus, "open-

source”, requirements information including a glossary, hazard analysis, and

specification of basic SDG requirements.

Develop a standard on "meta-requirements for critical software requirements".

Encourage regulators to require compliance with the meta-requirements standard.

Encourage quality-aware development.

Encourage specification of quality attribute requirements using a tailored 3D quality

model.

Encourage staffing of a Quality and Productivity function (part 3 of Quality Goals

chapter).

7. Encourage development and use of an industry-supported edge-case simulator for SDG
software verification.

abrwn

o

Note: Details of mitigations 4-6 can be found at www.quality-aware.com



http://www.quality-aware.com/

3/23/2018




3/23/2018

Unrecognized Ambiguity




3/23/2018

Review




Developing requirement artifacts from identified hazards

Identify:

e potential system hazards that must be detected and responded to
e glossary definitions for hazard or response terminology e.g. driving erratically

Various forms of hazard analysis might identify:

System failures
e all/some sensors fail
e classifier fails e.g., misclassifies
o effector logic fails
e cpu with guidance software dies
e GPSsignal lost
e software fails e.g., causes unanticipated acceleration (UA) or erratic behavior
e software enables hacking
e software fails to adapt to new environments e.g. passage from England to France or entry into
school zone

Vehicle conditions
e motor dies
e tires go flat
e brakes fail
e Dbattery fails
e vehicle catches fire
e top is sheared off
e vehicle skids (e.g., onice)
e vehicle is submerged

Roadway conditions
o weather conditions
e different zones e.g., school, hospital, or work
e large, heavy, stationary object (e.g., firetruck) blocking the roadway or lane
e roadway collapses (e.g. bridge or sink hole)
e kangaroo on or near roadway
e traffic light outages
e stale yellow light

Traffic conditions
e wrong way driver
e car ahead/beside drives erratically
e car behind tailgates



Such hazard lists can be used to guide requirements development or check the completeness of existing
requirements. To guide requirements development, each hazard including some system failures, can be
put into the following template and then factored into specific situations.

If <hazard>, then the system must safely respond.
For example:
If the “motor dies” and the vehicle is stopped, then ...
If the “motor dies” and the vehicle is moving and safe stopping is feasible, then ...

If the “motor dies” and the vehicle is moving and safe stopping in not feasible, then ...



3/23/2018

-
a
a
P
a
&
5
=




3/23/2018




3/23/2018

Review




Meta-requirements for critical software requirements
A straw-draft specification

Definitions:

A mission statement specifies the goals of a mission.

High-risk missions may result in significant financial loss and/or serious injury or death.
Critical software supports the goals of high-risk missions.

The general public are those not directly involved in a mission.

vk wN e

HRGP missions are those whose failures are likely to endanger the general public e.g., self-
driving vehicles.

A quality goal is a quality attribute requirement e.g., a security requirement.

Basic qualities (as described in the LiteRM quality model — www.quality-aware.com/daves-g-a-
stuff.php) are internal qualities including understandability, verifiability, and compliance.

8. We consider the following types of software requirements:

N o

Types and subtypes Primary Understanding
of software requirements Sources Risk
Functions
Domain functions
interactive
happy paths Customers Medium
unhappy paths Developers Medium
autonomous Developers Low
System functions e.g., backup Developers Low
Quiality support functions
external quality supports e.g., exception handlers | Developers Medium
mixed quality supports e.g., encrypting routines Developers High
Quality goals (i.e., quality attribute requirements)?
Internal qualities e.g., coding standards compliance Quality Management Low
External qualities e.g., reliability Customers & Developers | Medium
Mixed qualities e.g., security Customers & Developers | High
Constraints
Technical
design e.g., no single point of failure Developers Medium
implementation e.g., coding standards Quality Management Low
verification e.g., test coverage Quality Management Low
deployment e.g., secure packaging Developers Low
Societal e.g., regulations Quality Management Low
Project e.g., deadlines Project Management Low
Supplier attributes Quality Management Low

9. Each requirement has a set of common properties such as an identifier, type, primary sources,
state, and priority.

10. Technical inspections are skeptical if inspectors assume the work is defective and diligently
search for the defects.

! Details about quality goals can be found in Chapter 3 of Understanding Requirements and in the LiteRM 3D
quality model. Both are freely available at www.quality-aware.com/daves-g-a-stuff.php.


http://www.quality-aware.com/daves-q-a-stuff.php
http://www.quality-aware.com/daves-q-a-stuff.php
http://www.quality-aware.com/daves-q-a-stuff.php

11. Meta-requirements are restrictions on a requirement or set of requirements.

12.

Assumptions:

1.
2.

We don’t fully understand the complex software we are building.

Effective development of complex software requires humility and an emphasis on
understandability.

When software endangers the general public, our loved ones deserve our best efforts.

“As is well known to [some] software engineers (but not to the general public), by far the largest
class of problems arises from errors made in the eliciting, recording, and analysis of
requirements.”?

Quality goals are poorly understood by developers.

Legacy norms (i.e., that’s the way we have always done it) can be dangerous when dealing with
significantly increased complexity.

The rationale for each meta-requirement is to maximize understanding and/or minimize defects
in software requirements.

The rationale for the set of meta-requirements is to prevent unnecessary harm.

Meta-requirements:

Software requirements must be organized by types and subtypes.
Each requirement must have:

a. anidentifier showing its type or subtype

b. properties identifying priority, status, sources, and associated requirements

c.
Functional requirements must be specified by rules specifying trigger conditions and associated
actions.
Trigger conditions must be skeptically inspected to assure that each condition is neither too
broad nor too narrow and is effective in capturing intent. Each action must be skeptically
inspected to assure that it is safe and effective when its trigger conditions exist.
Trigger conditions for a set of functional requirements must be analyzed and skeptically
inspected for correctness, feasibility, completeness, consistency, and necessity.
All basic qualities must be required (and aggressively verified).
The production and logging of assurance evidence during operation (e.g., by self-checking) must
be required.

2 Daniel Jackson, Martyn Thomas, and Lynette I. Millett, Editors
Software for Dependable Systems: Sufficient Evidence?

National Research Council 2007 [page 40]



8. The properties of a quality goal must specify its

a.

"STm o o0 T

definition

required level of achievement

measurement strategy

hazards

mitigations

achievement strategy

verification strategy

relationships to quality functions and other quality goals

9. The set of requirements must have:

10.

11.

12.

13.

14,

a.

s o a0 o

g.

A requirements glossary or ontology to precisely define conditions, actions, states, and
any other words, phrases, acronyms, and abbreviations used in requirements
statements. Actions must be defined by constant, pre, and post conditions. The glossary
entries must be complete and consistent. The glossary must be configuration managed
and readily accessible to any stakeholder.

A set of user type specifications, if the software is interactive

A set of domain object specifications

A set of domain facts and assumptions

A set of facts about values, conditions, and relationships

A set of associated regulations

Each requirement must be discrete, understandable, unambiguous, valid, necessary, complete,
concise, conformant, feasible, and verifiable.

The set of requirements must be task-adequate, concise, consistent with each other, prioritized,
and achievable.

The requirements and their associated information must be skeptically inspected.

The set of requirements and their associated information for critical software supporting HRGP
missions must be made freely available to the general public no later than the start of software
design based on these requirements.



software logic

This fail-safe software

A Case Study of Toyota
Unintended Acceleration and
Software Safety

Prof. Phil Koopman

September 18, 2014
Carnegie Mellon University

3/23/2018




3/23/2018

no single point of software failure

o RE community




3/23/2018




