

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

On Whose Shoulders We Stand: Theory *testing* or theory *building* in requirements engineering research

Keynote REFSQ Doctoral Consortium Sjaak Brinkkemper Utrecht University

Outline

- 1. Your contribution a theory?
- 2. Theory development
- 3. Theory in Design Science
- 4. Example of Theory building research
- 5. Conclusion and discussion

For this presentation I stand on the shoulders of many colleagues.

A full elaboration of theory building and theory testing can be found in the book: Dul, J., & Hak, T. (2007). Case study methodology in business research. Routledge.

A PhD: Your contribution to the sciences

- A Phd work builds upon all the work done in a particular domain.
- In Computer Science we design innovative technology, and we forget our theoretical contributions.
- Poor habit, so our colleagues in other sciences are looking down on us

Your hypothesis

Examples:

- Executing systems development in sprints improves stakeholder satisfaction
- Establishing linguistic relationships simplify requirements engineering in high volume requirements management

What is a theory?

- A theory is a set of propositions about an object of study.
- A proposition consists of concepts and specifications of relations between concepts.
- The relations are assumed to be true for the object of study.
- The set of instances to which the relations apply is called the domain, i.e. the field in which the proposition can be generalized.

Four essential characteristics of a theory:

- 1. Object of study
- 2. Concepts
- 3. Propositions
- 4. Domain

P	erson	7			Address
Name Phone Nur Email Add	nber 01	lives at	1	Street City State Postal Code	
Purchase	A I]			Validate Output As Label
Student	Pi	ofessor			
Student Number Average Mark	Salary				
Is Eligible To Enroll Get Seminars Taken					

Discussion: what is your theory?

- Name the four essential theory characteristics of your project:
 - 1. Object of study
 - 2. Concepts
 - 3. Propositions
 - 4. Domain

What are the Dependent and Independent Concepts?

Outline

- 1. Your contribution a theory?
- 2. Theory development
- 3. Theory in Design Science
- 4. Example of Theory building research
- 5. Conclusion and discussion

Theory Development

- Theory building research is research with the objective of formulating new propositions based on the empirical evidence drawn from observation of instances of the object of study.
- Theory testing research is research with the objective of testing propositions

Universiteit Utrecht

Research strategies for Theory building

9

Types of causal propositions

- **1**. Sufficient: If there is A, then there will be B
- 2. Necessary: B exists only if A is present
- 3. Deterministic: If A is higher, then B is higher
- 4. Probabilistic: If A is higher, then it is likely that B is higher

Discussion: what are good examples of these causalities in our field?

What applies for RE research?

Contributions with new techniques and tools are usually focusing on Deterministic and Probabilistic causality of the efficiency or effectiveness of RE work.

Research strategies for theory testing

Proposition	Preferred	Case study	Survey
Sufficient condition	Experiment	Single-case study	Third-best
Necessary condition	Experiment	Single-case study	Third-best
Deterministic relation	Experiment	Longitudinal single-case study or comparative case study	Third-best
Probabilistic relation	Experiment	Third-best: comparative case study	Second-best

Outline

- 1. Your contribution a theory?
- 2. Theory development
- 3. Theory in Design Science
- 4. Example of Theory building research
- 5. Conclusion and discussion

Theory in design science?

Theories of the usage and performance of newly designed artifacts to understand, explain or enhance aspects of information technology in general

Usage: changes for the users, e.g. their way of working
Performance: change of properties, e.g. speed, integration
Artifact: Interface, method, tool, specification language, ...

- Measure improvements, gain insight in the way work is performed
- Application in medical and technological sciences, including information and computing science

Approach

Universiteit Utrecht

Design Research Cycle

Universiteit Utrecht

IST and SOLL

Design levels

Universiteit Utrecht

Outline

- 1. Your contribution a theory?
- 2. Theory development
- 3. Theory in Design Science
- 4. Example of Theory building research
- 5. Conclusion and discussion

Theory building: Speeding up Requirements Management in a Product Software Company

- External Context: Baan with 8000 customers and 15.000 product installations
- Internal Context: 60 Product managers responsible for the requirements management processes
- Problem: linking of customer wishes to product components is too cumbersome
- Idea: Use linguistic engineering techniques to link customer wishes to product requirements
- Joint work of:
 - Björn Regnell and Johan Natt och Dag, Lund Institute of Technology, Sweden
 - Vincenzo Gervasi, Pisa University, Italy
 - Sjaak Brinkkemper, Utrecht University, The Netherlands

Approach: what is the problem?

Universiteit Utrecht

Context: organisation "Baan"

Founded in 1978 in the Netherlands

- 15,000+ customer sites worldwide
- 1000+ employees
- 1,000.000+ users
- Markets
 - Manufacturing industry
 - Engineering industry
- Headquartered in Barneveld, The Netherlands
 - Offices and partners worldwide
 - 400 employees Development
 - 200 employees Customer Service & Support
- Now part of Infor

Complexity of large scale product software

- Several thousands of whishes, needs, and requirements stored in a database
- Market- and technology-driven software development
- Large, complex software systems
- Several different product lines
- Distributed development
- Uncertainty, frequent change, and time pressure
- Requirements written in plain text

Example requirements

Field	Example	[Description]	
Id	MR10739		
Example	[Req1	uest raiser's company]	
Request Person		[Request raiser]	
Date	1996-05-29		
Label	Pricing and Contain	erization	
Description	Specifically what I a	im interested in	
	is containerization a	nd pricing. For a	
	prospect I am working with (pretty much		
	a distributor of elect	onic components	
) I need pricng by ty	pe of package by	
	cusotmer type (who	lesale or retail). I	
	think pricing by con	tainer solves this	
	problem, but I under	rstand to use this	
	feature the item mus	st be a process item	
	and I don't know if t	this is good or bad. If	
	I must use process what do I gain or lose,		
	like do I have to run	a seperate MRP etc.	
	Do I have to have one process company		
	and one non-process	s company. They have	
	mainly an assembly operation with no		
	process involved. If process would be to		
	cumbersome how di	fficut a mod would	
	it be to disconnect c	ontainerzation from	
	process.		
Keywords	Pricing, order plann	ing	
Priority	Medium		
Туре	Functionality		
Status	Closed/Completed		
User name	[Requirement submitter]		
Comments	020699: functionalit	ty is available in	
	BaanERP in the Price	cing module	
Agreement	None		

Field	Example	[Description]		
Id	BR10025			
Date	1998-01-27			
Label	Statistics and containers			
Description	1. Container (end item) in statistics			
	Purchase and sales statistics used to be			
	maintained only at maintained	in item level. But		
	now it has also become	e possible to build		
	statistics at container le	evel. There are two		
	aspects: printing statis	tics in the number		
	of containers for a mai	n item selecting		
	and/or printing statistics at container level			
	2. Displays in statistics			
	Displays are compositi	ions of end items		
	(for example, an attrac	tive display of		
	different types of cake). The statistics		
	will be updated at both	the levels of		
	display item and container (which is part			
	of the display). Prevention of duplicate			
	counting, and correct p	pricing must be		
	arranged in a procedural manner.			
Keywords	Keywords Process industries			
Туре	Usability			
Status	Assigned			
User name	[Requirement submitter]			
Comments	Warehousing only			

Approach – step 1: analysis

The Baan RDB

	# Business	# Linked	# Market	# Linked
Year	Requirements		Requirements	
1996	0	0	183	113
1997	5	4	683	262
1998	275	169	1,579	388
1999	709	261	2,028	502
2000	669	167	1,270	397
2001	1,000	153	864	224
2002	1,121	340	1,695	514
Total	3,779	1,094	8,302	2,400

Linking statistics

Approach – step 2: design

Tactics: possible solutions

Add more resources

Too costly!

Reduce the amount of incoming requirements

Not a good idea for customer relationship!

Let customers do the linking

Plans of new releases may not be shown externally!

Idea: use linguistic techniques to find similar requirements

ongoing, continuous

*/////>

Linguistic Engineering approach

Suggestion list

MR10013			
Pos	Requirement	Similarity	
1	BR10012	0.45	
2	BR10156	0.43	
3	BR10006	0.42	
4	BR10536	0.38	
5	BR10987	0.36	
6	BR10273	0.36	
7	BR10740	0.34	
8	BR10419	0.33	
9	BR10622	0.24	
10	DD40082		

Design issue: What is the optimal top list size?

	MR10013		
Pos	Requirement	Similarity	
1	BR10012	0.45	
2	BR10156	0.43	
3	BR10006	0.42	
3	BR10006	0.42	

Suppose we restrict the suggestions to the top list -*How many candidate requirements are in the top list?* -*How many candidate requirements are missed?* -*How long is an optimal top list?*

[Faculty of Science Information and Computing Sciences]

Theory testing in text retrieval: Found and correct? – Confusion matrix

TP: True PositivesFP: False PositivesFN: False NegativesTN: True Negatives

Found and correct Found but incorrect Not found but correct Not found and incorrect

Recall = Found correct / All Correct = TP / (TP + FN)

Manual related to automated

	MR10013		
Pos	Requirement	Similarity	
1	BR10012	0.45	
2	BR10156	0.43	
3	BR10006	0.42	
4	BR10536	0.38	
5	BR10987	0.36	
6	BR10273	0.36	
7	BR10740	0.34	
8	BR10419	0.33	
9	BR10622	0.24	
10	P		

Manually linked and presumed correct

37

Recall related to top list size

		MR10013	
Pos	Requirement	Similarity	
1	BR10012	0.45	
2	BR10156	0.43	Pecall(7) -
3	BR10006	0.42	
4	BR10536	0.38	= 2 / 3 =
5	BR10987	0.36	= 67%
6	BR10273	0.36	
7	BR10740	0.34	
8	BR10419	0.33	
9	BR10622	0.24	
10	B		

Approach – step 3: implement

Universiteit Utrecht

Implementation

- Linguistic functionality was coded and inserted into the Baan RDB
- A pilot was run first to check whether extension was according quality standards
- Product managers were trained to use the functionality

Universiteit Utrecht

Approach – step 4: evaluate

Universiteit Utrecht

A comparative cost-benefit evaluation

	Subset providing 100% recall using a top-10 list	
	BRs	690
1	The MRs linked by product managers	1,249

Manual search	~30 hits	Savings:
Assume 1 search term is enough		~66% > or
Automatically supported	10 hits	~115 hours

Potential next steps

- Aggregate similarity measures using other techniques
- Reuse information in already linked requirements
- Incorporate semantics from names of software modules
- Expert validation in concept similarities

Outline

- 1. Your contribution a theory?
- 2. Theory development
- 3. Theory in Design Science
- 4. Example of Theory building research
- 5. Conclusion and discussion

Conclusion

- Theory building or theory testing is an overlooked issue in PhD project design
- Most RE research work is theory building, where the design is the theory
- Design science research requires a variety of research methods for validating the design
- In 2014 the discussed paper (Dag, J. N., Regnell, B., Gervasi, V., & Brinkkemper, S. (2005). A linguisticengineering approach to large-scale requirements management. Software, IEEE, 22(1), 32-39.) was awarded the Most influential Paper award of the Requirements Engineering Conference community

Discussion

