A Systematic Literature Review of Requirements Modeling and Analysis for Self-adaptive Systems

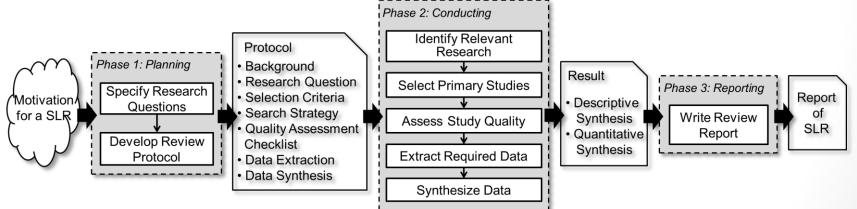
Zhi Jin

Key Laboratory of High Confidence Software Technologies Peking University Beijing, China zhijin@sei.pku.edu.cn

20th International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ) Essen, Germany, April 07-10, 2014

Outline

- Introduction and Motivation
- Research Method
 - Research Questions
 - Search Process
 - Selection Procedure and Criteria
 - Search engines
 - Search Strings
 - Quality Assessment Checklist
- Results and Discussion
- Challenges
- Threats to Validity
- Conclusion



Introduction and Motivation

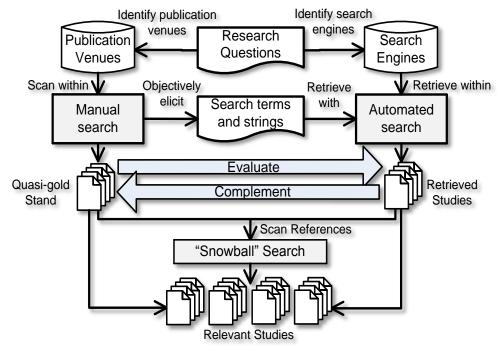
- Self-adaptive systems (SASs)
 - Adjust their behaviors in response to the dynamic changes
 - Characterized by self-* properties (self-reconfiguring, self-healing, selfprotecting and self-optimizing)
- Requirements engineering (RE) for SASs defines
 - Both domain logic and adaptation logic
 - What/why/where/when/who/How to adapt
- The objective of this paper is to
 - Systematically investigate the research literature of requirements modeling and analysis for SASs
 - Summarize the state-of-the-art research trends
 - Categorize the used modeling methods and relevant RE activities
 - Classify the quality attributes and application domains
 - Assess the quality of current studies
 - Generate the most active research topics

Research Method

- Systematic Literature Review (SLR) a systematic methodology of
 - Defining answerable research questions
 - Searching the literature for the best available evidence
 - Appraising the quality of the evidence
 - Collecting and aggregating available data
- Research Process

- Protocol
 - Define basic review procedures
 - https://www.dropbox.com/s/t6i4ock5g11zo2x/SASProtocol.pdf

Research Questions


• We define seven research questions (RQ):

Research question	Туре
RQ1: What is the time/venue/research group/region distribution of the publications?	Publication
RQ2: What modeling methods and RE activities are studied? RQ3: What requirements quality attributes and application domains are involved?	Content
RQ4: Which methods are better applied and have more rigorous evaluation? RQ5: Which RE activities are presented and discussed more detailedly?	Quality
RQ6: What topics can we generalize based on the content of selected studies? RQ7: What is the relationship between topics and modeling methods?	Торіс

- The questions can be categorized into four types:
 - Publication type: questions related to publication information
 - Content type: questions answered by extracting textual data
 - Quality type: questions answered by assessing the quality of papers
 - Topic type: questions related to the topics of relevant studies

Search Process

 Search process aims to identify relevant studies based on search strategies. It is underpinned by

- Quasi-gold standard (QGS)
 - A set of known studies established by manual search
 - Used to define search strings
 - Used to evaluate the performance of search strings

6

Selection Procedure and Criteria

• Selection procedure consists of three rounds:

Round 1: Scan each paper by title

Round 2: Scan the abstracts of candidate papers from Round 1

Round 3: Scan the full texts of the candidate papers from Round 2

• Relevant studies are selected with inclusion criteria and exclusion criteria defined below.

Inclusion criteria	Exclusion criteria
C1: Published time between 2003.1-2013.9	C5: In the form of books
C2: Focus on requirement modeling and	C6: In the form of editorial, abstract, keynote,
analysis for self-adaptive systems.	poster or a short paper (less than 6 pages)
C3: Related to concrete RE activity	C7: Opinion pieces or Position papers
C4: Involve concrete modeling methods	C8: Focus on summarizes the existing research
and evaluation to the methods	work, e.g. roadmap or survey

 Retrieved papers are firstly checked with exclusion criteria and then checked with inclusion criteria.

Search engines

- Search engines are
 - Databases for the automated search
 - Digital libraries where publication venues are provided
- We choose 6 search engines that cover the RE literature
 - ACM Digital Library, IEEE Xplore, Springer
 Science Direct, El Compendex, Web of Knowledge
- The qualified 11 conferences/symposiums and 10 journals/books are mainly chosen according to the Australian ERA Outlet Ranking.

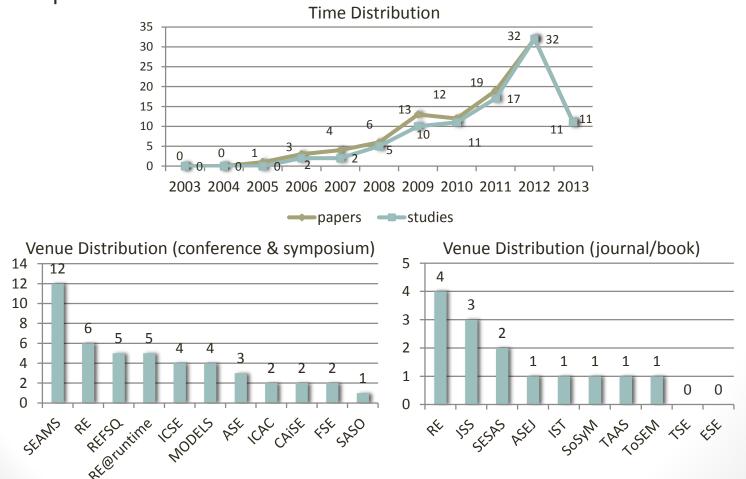
Conference/ Symposium	ERA ranking	Journal/ Book	ERA ranking
ICSE	А	TSE	А
FSE	А	ASEJ	А
RE	А	JSS	А
ASE	А	ToSEM	А
REFSQ	В	ESE	А
MODELS	В	IST	В
ICAC	В	SoSyM	В
CAiSE	В	REJ	В
SEAMS	N/A	TAAS	В
SASO	N/A	SESAS	N/A
RE@runtime	N/A		

9

Search Strings

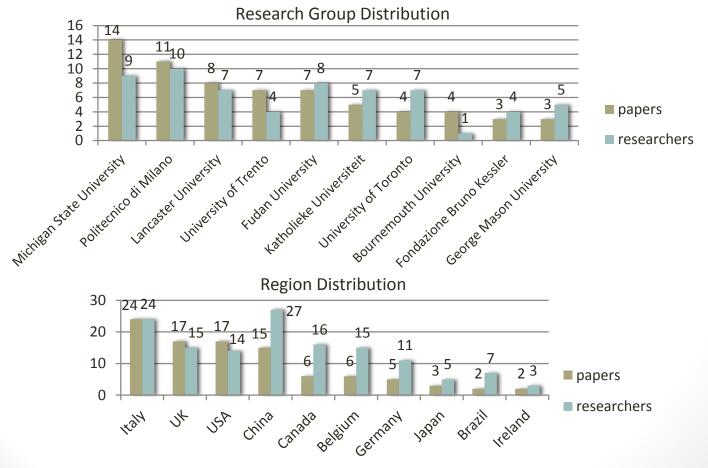
• By using text mining, we define the search strings:

ltem	Search string
S1	("self-adaptive systems" OR "dynamically adaptive systems" OR "adaptive system" OR "Adaptive software" OR "self-adaptive software" OR "adaptive service" OR "web systems" OR "socio-technical system" OR "self-adjusting systems" OR "autonomic computing" OR "self-adapting software")
S2	"model requirements" OR "modeling requirements" OR "Requirements modeling"
S 3	"specify requirements" OR "specifying requirements" OR "requirements specifying" OR "requirements specification"
S4	"monitor requirements" OR "monitoring requirements" OR "requirements monitoring"
S5	"aware requirements" OR "requirements-aware" OR "requirements awareness" OR "requirements-awareness"
S 6	"diagnose requirements" OR "diagnosing requirements" OR "requirements diagnosing" OR "requirements diagnosis"
S7	"detect requirements" OR "detecting requirements" OR "requirements detection"
S 8	"verify requirements" OR "verifying requirements" OR "requirements verifying" OR "requirements verification"
S 9	"requirements" AND ("self-adaptation" OR "self-reconfiguration" OR "self-repair" OR "self-healing" OR "self-tuning" OR adaptation OR configuration OR reconfiguration OR "decision making" OR "decision-making" OR "adaptation behavior" OR "behavior")
S10	"evolution requirements" OR "requirements evolution"


Quality Assessment Checklist

 Quality Assessment checklist is designed to evaluate whether a modeling method or a RE activity is maturely or rigorously conveyed in the literature.

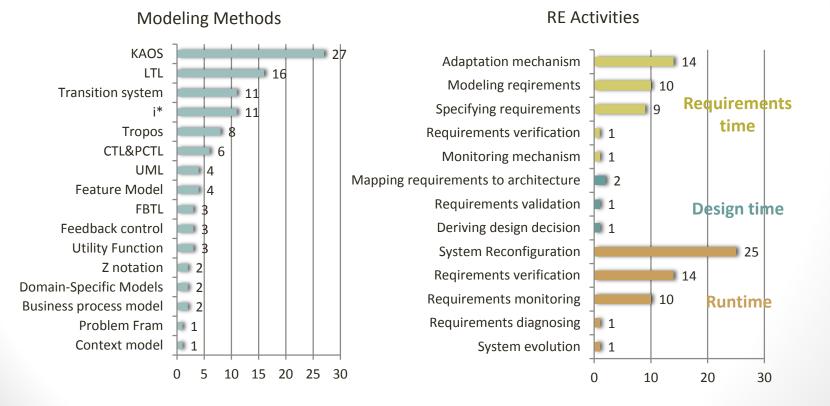
Assessment question	Optional answer and score
A1: How clearly is the problem of study described?	Explicitly=1/Vaguely=0.5/No description=0
A2: How clearly is the research context stated?	With references =1/Generally=0.67/ Vaguely=0.33/No statement=0
A3: How detailedly is the modeling method conveyed?	Step by step=1/Relatively detail=0.67/ Generally=0.33/Vaguely conveyed=0
A4: How detailedly is the RE activity elaborated?	Explicitly=1/General steps=0.67/ Vaguely=0.33/Disorderly=0
A5: How rigorously is the method evaluated?	Simulation=1/Detailed case study=0.67/ General case study=0.33/No evaluation=0
A6: How explicitly are the contributions presented?	Explicitly=1/Generally=0.5/No presentation=0
A7: How explicitly are the limitations discussed?	Explicitly=1/Generally=0.5/No discussion=0
A8: How explicitly are the insights and issues for future work stated?	With recommendations=1/Generally=0.5/ No statement=0


RQ1.1: What are the time and venue distribution of the publications?

• We select a total of 101 relevant papers with 11 repeated studies, in which 46 conference/symposium papers and 14 journal/book papers are covered in the publication venues.

RQ1.2: What are the research group and region distribution of the publications?

- The selected papers are from 29 research groups in 13 regions (according to the first author) and the 137 researchers are from 43 groups in 17 regions.
- Most of these papers are from European countries (58/101), followed by American countries (25/101) and Asian countries (18/101).

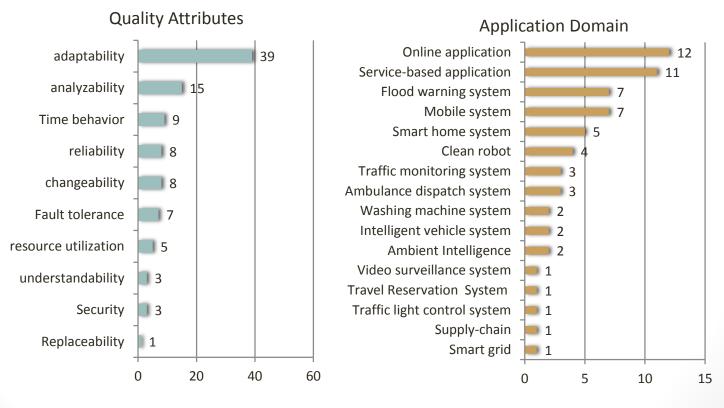


20th International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ) Essen, Germany, April 07-10, 2014

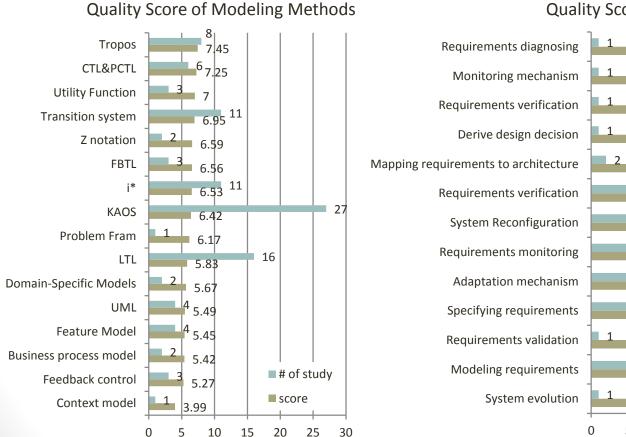
Results and Discussion

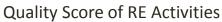
RQ2: What modeling methods and RE activities are studied?

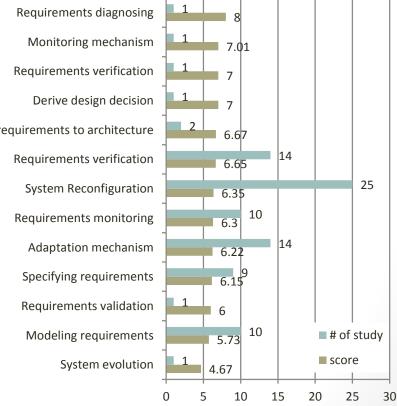
- Modeling methods are categorized according to the objective of modeling activities, including requirements, context and system.
- RE activities are classified according to the period in the lifecycle, including activities at requirements time, at design time and at runtime.



20th International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ) Essen, Germany, April 07-10, 2014


RQ3: What requirements quality attributes and application domains are involved?


- We investigate the requirements quality attributes (Figure 9) related to SASs according to ISO 9126.
- The application domains can benefit researchers and practitioners to choose appropriate demonstrations and design reasonable experiments.



RQ4: Which methods are better applied and more rigorously evaluated? **RQ5**: Which RE activities are presented and discussed more detailedly?

Relevant studies are appraised according to the quality assessment checklist

RQ6: What topics can we generalize based on the content of selected studies? **RQ7**: What is the relationship between topics and modeling methods?

- We code segments of relevant studies with 135 key phrases and 44 of them are kept after removing duplicate phrases.
- These codes are categorized into 7 topics according to the content of papers.

Торіс	Sub-topic	KAOS	*:	Tropos	Feature Model	Context model	Problem Frame	NML	Business process model	Domain- Specific Model	Transition system	TLLT	CTL&PCTL	FBTL	Z notation	Utility Function	Feedback control
	context modeling and analysis	1		1		1											
pu	defining SAS development framework			2													
is al	describing adaptation in feedback loop										1						1
text	modeling adaptation mechanism	5	2	1			1	1	1								
contexts and	model adaptation with security requirements	2															
	modeling and reasoning on NFR										1						
Modeling requirements, systems	modeling domain requirements for SAS									1							
ren syst	modeling requirements evolution	1															
dui	modeling RE activities of SAS		1														
9 0	modeling security requirements	1															
lin	modeling systems behavior						1					1					
ode	modeling variant of self-adaptive systems									1							
Σ	cope with requirements changes		2														
	customize software with preferences	1															
nts	specifying and managing self-* properties														1		
Specifying adaptive elements	specifying adaptation mechanism										1						
	specifying adaptation semantics	3										2					
	specifying adaptive programs											2					
S _k apt	specifying adaptive requirements	1															
ad	specifying self-adaptive systems							1				1			1		

16

RQ6: What topics can we generalize based on the content of selected studies? **RQ7**: What is the relationship between topics and modeling methods?

Торіс	Sub-topic	KAOS	*	Tropos	Feature Model	Context model	Problem Frame	NML	Business process model	Domain-Specific Model	Transition system	רגר	CTL&PCTL	FBTL	Z notation	Utility Function	Feedback control
÷>	addressing environmental uncertainty	1						1									
wit	decision making with uncertainty		1								2					1	
ing erta	mitigating uncertainty through adaptation	1	1											1			
Dealing with uncertainty	modeling sources of uncertainty		1														
	modeling uncertainty in requirements													1			
	QoS verification										1		1				
Verification and validation	requirements modeling and validation						LS					1					
ification a validation	validating the qualities of system										1	1					
catio	validating requirements at design time													1			
vali	verifying NFR at runtime										1		1				
Ve	verifying adaptive programs											3					
	verifying requirements at runtime										3	1	3				
Monitori ng and detecting	monitoring requirements	2		1								1				1	1
Monitori ng and detecting	detecting inconsistency within contextual req.			1													
Me Det	detecting requirements violation	1										1				1	
u	self-tuning with unanticipated changes				1												
cisio	dealing with runtime variability reconfiguration				1												
de	requirements-driven runtime reconfiguration	5	2	1	2												1
on and making	runtime evolution by dynamic reconfiguration	1									4		1				
on a	runtime reconfiguration with model evolution								1								
Adaptation and decision making	decision making to protect security req.	1															
	optimizing design decision			1													
	trade-off between FR and NFR							1									
mapping	mapping requirements model to arch. model		1									2					

Challenges (1/2)

- Modeling method
 - Integrate context model with other models within the scenario of system adaptation
 - Apply problem Frame to modeling adaptation mechanisms
 - Utilize other control types, such as adaptive control, feedforward-feedback control, fuzzy control, etc.
- RE activity
 - Requirements-driven architecture adaptation
 - Requirements-driven evolution
 - Runtime diagnosing
- Application domains
 - Application interact with other software, systems or the human.
 - E.g. Mobile computing, Smart Grid, Cyber Physical Systems, Internetware
- Quality attributes
 - Security and self-protection
 - Replaceability and self-recofiguration
 - Understandability and self-explanation

Challenges (2/2)

- Improving research quality
 - Quantitative models and mathematical models
 - Integrate other disciplines with RE for SASs :
 - Control theory to design adaptation mechanisms in SASs
 - **Fuzzy set theory**, **probabilistic theory** and **probability theory** to describing uncertainties of both requirements and context
 - **Optimization theory, decision theory and game theory** to derive appropriate adaptation decisions
- Research hot topics
 - Modeling adaptation mechanism
 - Specifying adaptation semantics
 - Mitigating uncertainty through adaptation
 - Verifying requirements at runtime
 - Monitoring requirements
 - Requirements-driven reconfiguration at runtime

[19]

Threats to Validity

- Potential Bias (researcher's bias)
 - Adopt Kappa coefficient to assess the selection results
 - Joint meeting and discussing with external researchers
- Internal Threats (systematic errors)
 - Establish a rigorous protocol in advance
 - The protocol is reviewed by external reviewers
 - Final results are derived by integrating the result of different participants
- External Threats (omission, new published studies)
 - Taking into account all the primary venues in this area
 - Integrating manual search, automated search and "snowball" search together

Conclusion

- Increased trend in paper publication
 - 22 primary publication venues
 - Top 3 conference/symposium: SEAMS, RE, REFSQ
 - Top 3 journal/book: RE, JSS, SESAS
 - 101 papers from 29 research groups in 13 regions
 - 137 researchers from 43 groups in 17 regions
- 16 modeling methods used in 11 RE activities
- 10 quality attributes are studied
- 16 application domain are involved
- Large gaps in research quality
- 7 topics and 44 sub-topics
- Research gaps and challenges

