State of Practice of User-Developer Communication in Large-Scale IT Projects

Results of an Expert Interview Series

(Ulrike Abelein), Barbara Paech

Institute of Computer Science Software Engineering Im Neuenheimer Feld 326 69120 Heidelberg, Germany <u>http://se.ifi.uni-heidelberg.de</u> Paech@informatik.uni-heidelberg.de



RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

- Motivation
- Research Questions
- Research Method
- Results
- Conclusion

Issues of users¹

- Users do not feel integrated in the project
- Users do not recognize their requirements in the acceptance phase
- Users have low motivation to participate in IT projects

Source: 1 (Doll & Torkzadeh, 1989)

Consequences for project²

- Low acceptance of the system in large-scale IT projects
- Frustration and inefficiency between users and developers

2 (Bjarnason, et al 2011)

- RQ 1: Do users and developers communicate in large scale IT projects?
- RQ 2: What are possible organizational obstacles that prevent largescale IT projects from implementing UDC?
- RQ 3: What factors might cause communication gaps between users and developers and what are the consequences of these communication gaps?
- RQ 4: What do experienced practitioners suggest to overcome the obstacles for the implementation of UDC and to eliminate the factors that cause communication gaps?

Research Method

- Interview series with 12 experts from Oct. Dec. 2012
- Qualitative semi-structured interviews based on questionnaire
 - (ø time 90 min, 4 in person, 8 via telephone)
- Identification of experts through role descriptions
 - Leading role in the coordination of Business and IT
 - 7 consultants, 4 internal IT departments, 1 SW provider
 - Widespread educational background
 - More data on projects in the paper
- Data Analysis
 - Recorded 18 hours of interview time
 - Transcribed interviews + validated & approved by experts
 - Coded the interviews based on RQs and analyzed with MaxQDA
- Mapping to Literature
 - Post interview mapping of ideas of experts with existing literature

	Role in Company	Perspective (Industry)	Educational Background	# of Proj.
1	Project manager	Internal IT (Pharma)	Mathematics	15
2	Business project manager	Management consulting	Business Administration and Engineering	6
3	Developer, architect, requirements engineer	IT consulting	Computer Science	3
4	Business project manager	Management consulting	Mechanical Engineering	3
5	Developer, head of research department	IT consulting	Computer Science	5
6	IT project manager	IT consulting	Information Technology	6
7	Business project manager	Internal IT (Insurance)	Mathematics	2
8	Head of IT Strategy	Internal IT (Public Sector)	Computer Science	3
9	IT project manager	IT consulting	Computer Science	4
10	CEO	Management Consultant and Software Company	Physics	14
11	IT project manager	IT consulting	Apprenticeship as Bank Clerk	5
12	Head of IT Strategy	Internal IT (Insurance)	Information Technology	3
			Sum / Average	69 / 6
			Min Max	2 15

Threats to Validity (based on Runeson)

- Construct validity
 - both sides could influence the direction of the discussion, i.e not pose all questions explicitly.
 - Visual cues prevented via telephone → mitigated through the recording of all interviews
- Internal validity
 - Relied on our personal relationships for the identification of experts, therefore they might be biased → but majority of the experts did not know the interviewer
- External validity
 - Only interviewed twelve experts but diverse backgrounds and experience
- Reliability
 - Interviews and coding of the interviews were conducted by one person → ensures consistency, but interpretation might be biased

Direct communication between developers and users (RQ 1)

Existence of UDC (Descriptive Code)	# of Int.	
Communication between software coders (i.e. developers) and users	3*	
No communication between software coders (i.e. developers) and users	11	
Other forms of communication with users		
Communication between IT consultant and users	3	
Communication between architect and users	2	
Communication between requirements engineer and expert user	2	

The main findings

- direct communication between developers and users does not exist in most large-scale IT projects
- Most of the communication is done either in the early or the late activities of software development which shows a lack of communication in the middle of the development, i.e. in the design and implementation activity.
- Implementation of methods from research is limited in practice.

*Two of these three experts also participated in projects where no direct communication between those parties existed

software Organizational obstacles for implementing communication engineering heidelberg with users (RQ 2)

ID	Organizational Obstacles	# of Int.
01	Different opinions between user groups	2
02	Get the right user representatives for large-scale projects	2
О3	No access to users/users unknown	1
04	Lack of local mediators	1

The main findings

- Different user groups or business units force developers to mediate between these groups
- Key users are hard to get as they are very important for the business operations and thus will not be released to fulfill tasks within IT projects.
- Initiation of user-developer communication comes from a few key members who control information flows

software engineering heidelberg gaps (RQ 3)

ID	Factors for communication gaps	# of Int.
F1	Lack of motivation of developers or users	4
F2	Lack of common language between Business and IT	4
F3	Lack of appreciation between Business and IT	1
	Consequences caused by Communication Gaps	# of Int.
C1	Misunderstanding of requirements	8
C2	Ad-hoc changes required due to unclear requirements	3
C3	Increased implementation cost	3
C4	Increased test effort due to rework	1

The main findings

- Misunderstandings and ad-hoc changes have an impact on cost and schedule of the project.
- Missing appreciation has not been described so far and is interesting, as the required actions to improve appreciation between IT and Business are different from overcoming barriers of a common domain language
- Experts stated a clear connection between communication gaps and increased implementation costs and a higher test effort.

software engineering heidelberg gaps (RQ 4)

Cate gory	Ideas (Descriptive Code)	# of Int	Literat ure	Addressed Factor/Obstacle	
User-centered approaches	Presentation of (UI) prototypes or proof of concepts to users	3	[14, 28, 29]	Get the right user representatives for large-scale projects	
	House tours in different business units with running SW	1	[17, 30]	Lack of common language between business	
	Description of added value to users to increase acceptance	1	n/a	and IT	
tere	Incentive system for the participation of			Lack of motivation of developers or users	
User-cen	business users		[31]	Get the right user representatives for large-scale projects	
	Involvement of users in the organization of rollout and change management	1	n/a	Get the right user representatives for large-scale projects	
les	Developers must mediate between different user groups	2	[13]	Different opinions between user groups	
Developer-centered app				Lack of local mediators	
				Lack of common language between Business and IT	
				Lack of appreciation between Business and IT	
	End-to-end feature responsibility of developers	1	n/a		
	Developer writes informal description of how to implement requirements.	1	n/a	Lack of common language between Business and IT	
	Obligation to justify all technical decisions with functional need	1	n/a		
Organizationa I approaches	Usage of test data early in project	2	[32]		
	Agile methods e.g. frequent review meetings	2	e.g. [17, 33]	n/a	
	Definition of usability guidelines to avoid detailed UI discussions	1	n/a		

The main findings

- Experts' ideas address all factors for communication gaps & organizational obstacles expect the "lack of access to users"
- Six ideas could not be mapped to literature, such are particular interesting
- Experts did not report of a successful, sustainable solution to overcome the communication gaps in large-scale IT projects.

- Contributions for the community:
 - Increased empiricial evidence that direct communication between developers and users does not exist in most large-scale IT projects
 - Identified organizational obstacles, factors for and consequences of missing communication in large-scale IT projects from real life practitioners
 - Identified six new ideas from practice that could not been linked to literature
- Future Work: Use results in our method to enhance user-developer communication in the design and implementation activity of large-scale IT projects