
Academic excellence for business and the professions

A Requirements-led Approach for

Specifying QoS-aware Service

Choreographies: An Experience Report

Neil Maiden, James Lockerbie, Konstantinos Zachos

Antonia Bertolino, Guglielmo De Angelis, Francesca Lonetti

Istituto di Scienza e Tecnologie dell'Informazione “A. Faedo” CNR

City University London

• Part of the framework 7 EU funded CHOReOS project to implement

a framework for scalable choreography development.

• How to provide user-centric processes to support the whole life

cycle of Service Oriented Computing systems from their:

– Design, to their development, up to their maintenance and

governance at run-time

• Based on business scenarios – we will use a dynamic taxi

management example

Context of our work
http://www.choreos.eu

• Goal: “...enable domain experts to develop decentralized ultra-large

scale (ULS) solutions composed of heterogeneous services that

are adaptable and QoS (Quality-of-Service) aware”

• Service composition – Orchestration

– Services are arranged locally (centralized) to achieve a goal

according to predetermined business logic and execution order

– Often expressed in workflow notation such as BPEL

• Service composition - Choreography

– Services interact in a global scenario to achieve a goal without a

single point of control (decentralized)

– Protocol for direct peer-to-peer interaction (no orchestrator)

• Increased flexibility can deliver more adaptive service-based

systems that satisfy more ambition requirements of different quality

types.

Choreography

1. Optimize the specification of choreography diagrams with respect

to system requirements;

– Design flexible choreographies that can be argued to satisfy

system requirements

2. Associate specified system requirements with choreography

activities in a choreography diagram;

– To specify the required behaviour and qualities of choreography

activities in a model.

3. Enhance choreography diagrams with quality properties that trace

system requirements, to support analysis and monitoring facilities.

– Means to trace service qualities back to the originating quality

requirements on the systems.

– Taking requirements that are not monitorable and transforming

them into properties that are to show continued requirements

satisfaction.

Requirements Challenges

• Future Internet vision – domain expert-centric process

• CHOReOS design components to specify QoS-aware service

choreographies

Requirements-led approach

MagicDraw

Specify natural
language

requirements

Generate first-cut
choreography diagram

Specify non-functional
properties on

choreography diagram

User task
models

Domain expert
Requirement specification

Domain expert
Choreography design

Refine service
choreography

Q4BPMN

CHOReOS Requirements Tool

• Our experiences have shown that domain experts can write

functional requirements in natural language

• However we do not believe that they can express measurable

quality requirements such as performance and reliability as

effectively.

• Therefore, need for tool support for expressing quality requirements

with simple and clear UI

Expressing Natural Language Requirements

Expressing Natural Language Requirements

Free-text

Quality
Prompts –
Decided by
project
consortium

• Users express requirements on systems rather than service

choreographies.

• Potential for requirements expressing similar functions or qualities –

overlaps and duplications need to be discovered and handled. (NB

surrogate for service consumers)

• We wanted to provide them with support to cluster similar

requirements that will map onto a single choreography diagram and

its elements such as activities and roles.

Clustering Requirements

Clustering Requirements

Requirements
selected for
the cluster

Requirements
in Database

Similarity
algorithm

Keyword search

Sort

MagicDraw

Specify natural
language

requirements

Generate first-cut
choreography diagram

Specify non-functional
properties on

choreography diagram

User task
models

Domain expert
Requirement specification

Domain expert
Choreography design

Refine service
choreography

Q4BPMN

CHOReOS Requirements Tool

User task models for choreography specification

• Aim to bridge gap between the requirements and the choreography

specification.

• Expand the user problem described by the requirements with

classes of user tasks

• Help to provide an idea of the choreography tasks based on the set

of requirements

User task models for choreography specification

• The cluster of requirements is matched to a catalogue of user task

models using a service called TEDDiE

• The retrieved user task models are returned with the matched

requirements

Match requirements to user task models

TEDDiE

Matching

XML request

(Cluster of
requirements)

CTT

catalogue

XML results

(CTT models and matched
requirements)

Pre-process
Disambiguate
Expand

Request Taxi CTT model

Choice – gateway

Enabling with
information exchange

User task models expressed in the ConcurTaskTrees (CTT) formalism
Paterno F., Santoro C., Preventing User Errors by Systematic Analysis of Deviations from the
System Task Model. International Journal of Human-Computer Studies, Vol. 56(2), 225-245 (2002)

XML output

MagicDraw

Specify natural
language

requirements

Generate first-cut
choreography diagram

Specify non-functional
properties on

choreography diagram

User task
models

Domain expert
Requirement specification

Domain expert
Choreography design

Refine service
choreography

Q4BPMN

CHOReOS Requirements Tool

Generate first-cut choreography diagram

• Our approach uses the Business Process Model and Notation

(www.bpmn.org), which is an emerging standard for business

process modeling and the specification of service choreographies.

• The choreography designer designs BPMN choreographies using

the MagicDraw visual modeling tool (www.nomagic.com), which

we configured to accept the XML files output from the Requirements

Tool.

• As a result, the choreography designer receives explicit

requirements-based guidance for designing a service

choreography based on a first-cut template model annotated with

requirements information.

First-cut choreography diagram

First-cut choreography diagram

Output from two
separate CTT models

Design advice

Containment tree

Requirements table

Mapping requirements to the choreography tasks

Requirements -
task matrix

Quality scores

MagicDraw

Specify natural
language

requirements

Generate first-cut
choreography diagram

Specify non-functional
properties on

choreography diagram

User task
models

Domain expert
Requirement specification

Domain expert
Choreography design

Refine service
choreography

Q4BPMN

CHOReOS Requirements Tool

Refine choreography diagram

Refine choreography diagram

Add participant
names (inc. Initiator)

Combine parts of
draft model

Add choreography tasks
Reword

MagicDraw

Specify natural
language

requirements

Generate first-cut
choreography diagram

Specify non-functional
properties on

choreography diagram

User task
models

Domain expert
Requirement specification

Domain expert
Choreography design

Refine service
choreography

Q4BPMN

CHOReOS Requirements Tool

Specify non-functional properties

• Implemented in MagicDraw as a design tool for specifying non-

functional properties within a BPMN choreography diagram

• The quality annotations can be applied to:

– a single task («Q4Task»);

– specific participant of a task («Q4Participants»); or

– whole choreography («Q4Choreography»)

• It currently defines four classes of properties:

– dependability properties

– performance properties

– security properties

– accuracy properties

• Properties services entering the choreography will have to abide by.

• Potential participants can understand quality level required on their

part.

Q4BPMN (Quality for BPMN)

• We identified three main concerns representing the different

contexts of the quality requirements:

• Software System: quality attributes quantifying either the behavior

of software components, or their interactions;

• Human–Computer Interaction: quality attributes quantifying any

interactions between a human and any part of the considered

software system;

• Business Activities: quality attributes quantifying the admissible

constraint used in order to characterize the activities of both the

whole system (i.e. software + human related activities), and its

actors from a business perspective.

Q4BPMN (Quality for BPMN)

Mapping values

• Some examples from the
taxi management scenario

Q4BPMN (Quality for BPMN) Example

Software monitors from Q4BPMN

• Q4BPMN enables us to map quality requirements into monitorable

properties on a choreography model, a task, participants in a task

• Generated monitoring module determines whether a property

associated to a quality requirement is satisfied using observed data

and messages.

• The approach uses event-based monitor includes a complex event-

processing engine based on Drools Fusion.

• E.g. Latency property

– e1 event starts incomingRequest, and finishes with

outgoingResponse event

– Rules monitor the completion of events and calculate average

completion times.

• Expressing requirements

– 97 requirements successfully specified and used to generate

meaningful first-cut choreography diagrams.

– Secondary qualities not used in practice.

• Clustering requirements

– Natural language processing on similarity algorithm took too long

(over 5 minutes per invocation on the requirements set)

– Matrix a solution?

• Retrieving task models for draft BPMN model

– Varying success on CTT models to draft BPMN. Need to expand

catalogue and evaluate the effectiveness in further studies.

Lessons Learned (1)

• Mapping requirements to choreography tasks

– In our example, 38 out of the 40 clustered requirements were

automatically mapped to choreography tasks and provided a

useful starting point for the user.

– Mapping issues however. Mapped to CTT model, not individual

choreography tasks

– Requirements granularity issues – high level requirements over

several tasks vs low level requirements.

– NFR0077: The user shall be able to use the taxi booking

system efficiently mapped across 5 choreography tasks

– Need decomposition and requirements trace. Via Satisfaction

Arguments?

Lessons Learned (2)

• Reconciling the user expressed quality scores with actual values for

the quality properties – a big challenge.

– Tried to use values from literature but wasn’t too successful.

– A lot of input from domain experts needed. Ultimately those with

knowledge of the taxi domain set the values.

• Integration of tools

– Successful in a forwards process, with trace to the original

requirements but...

– no backwards compatibility between MD and the requirements

tool – reduces the usefulness of the tool support.

• No need for dedicated IT professionals to provide the skills needed

for architectural design and software engineering? – yes and no

Lessons Learned (3)

• End-to-end approach for generating service-based systems that can

be traced to their originating requirements

• Integrated toolkit based on BPMN modelling in MagicDraw

• Task models provide domain knowledge and functional constraints

for choreography design

• QoS – quality requirements that are not measurable are mapped to

measurable, and thus monitorable, non-functional properties

(Q4BPMN profile)

• Future work?

– Address lesson learned

– Further application to new case studies

Conclusion

