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• Part of the framework 7 EU funded CHOReOS project to implement 

a framework for scalable choreography development. 

 

 

 

 

 

• How to provide user-centric processes to support the whole life 

cycle of Service Oriented Computing systems from their: 

– Design, to their development, up to their maintenance and 

governance at run-time 

• Based on business scenarios – we will use a dynamic taxi 

management example 

 

 

Context of our work 
http://www.choreos.eu 
 

• Goal: “...enable domain experts to develop decentralized ultra-large 

scale (ULS) solutions composed of heterogeneous services that 

are adaptable and QoS (Quality-of-Service) aware” 



• Service composition – Orchestration 

– Services are arranged locally (centralized) to achieve a goal 

according to predetermined business logic and execution order 

– Often expressed in workflow notation such as BPEL 

• Service composition - Choreography 

– Services interact in a global scenario to achieve a goal without a 

single point of control (decentralized)  

– Protocol for direct peer-to-peer interaction (no orchestrator) 

• Increased flexibility can deliver more adaptive service-based 

systems that satisfy more ambition requirements of different quality 

types. 

Choreography 



1. Optimize the specification of choreography diagrams with respect 

to system requirements; 

– Design flexible choreographies that can be argued to satisfy 

system requirements 

2. Associate specified system requirements with choreography 

activities in a choreography diagram; 

– To specify the required behaviour and qualities of choreography 

activities in a model.  

3. Enhance choreography diagrams with quality properties that trace 

system requirements, to support analysis and monitoring facilities. 

– Means to trace service qualities back to the originating quality 

requirements on the systems.  

– Taking requirements that are not monitorable and transforming 

them into properties that are to show continued requirements 

satisfaction. 

Requirements Challenges 



• Future Internet vision – domain expert-centric process 

• CHOReOS design components to specify QoS-aware service 

choreographies 
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• Our experiences have shown that domain experts can write 

functional requirements in natural language 

• However we do not believe that they can express measurable 

quality requirements such as performance and reliability as 

effectively. 

• Therefore, need for tool support for expressing quality requirements 

with simple and clear UI 

Expressing Natural Language Requirements 
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• Users express requirements on systems rather than service 

choreographies.  

• Potential for requirements expressing similar functions or qualities – 

overlaps and duplications need to be discovered and handled. (NB 

surrogate for service consumers) 

• We wanted to provide them with support to cluster similar 

requirements that will map onto a single choreography diagram and 

its elements such as activities and roles. 

Clustering Requirements 
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User task models for choreography specification  



• Aim to bridge gap between the requirements and the choreography 

specification. 

• Expand the user problem described by the requirements with 

classes of user tasks 

• Help to provide an idea of the choreography tasks based on the set 

of requirements 

User task models for choreography specification  



• The cluster of requirements is matched to a catalogue of user task 

models using a service called TEDDiE 

• The retrieved user task models are returned with the matched 

requirements 

Match requirements to user task models 
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Request Taxi CTT model 
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User task models expressed in the ConcurTaskTrees (CTT) formalism 
Paterno F., Santoro C., Preventing User Errors by Systematic Analysis of Deviations from the 
System Task Model. International Journal of Human-Computer Studies, Vol. 56(2), 225-245 (2002) 

 
 



XML output 
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Generate first-cut choreography diagram 



• Our approach uses the Business Process Model and Notation 

(www.bpmn.org), which is an emerging standard for business 

process modeling and the specification of service choreographies. 

• The choreography designer designs BPMN choreographies using 

the MagicDraw visual modeling tool (www.nomagic.com), which 

we configured to accept the XML files output from the Requirements 

Tool.  

• As a result, the choreography designer receives explicit 

requirements-based guidance for designing a service 

choreography based on a first-cut template model annotated with 

requirements information. 

 

First-cut choreography diagram 
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Specify non-functional properties 



• Implemented in MagicDraw as a design tool for specifying non-

functional properties within a BPMN choreography diagram 

• The quality annotations can be applied to: 

– a single task («Q4Task»); 

– specific participant of a task («Q4Participants»); or 

– whole choreography («Q4Choreography»)  

• It currently defines four classes of properties:  

– dependability properties 

– performance properties 

– security properties 

– accuracy properties 

• Properties services entering the choreography will have to abide by. 

• Potential participants can understand quality level required on their 

part.   

 

Q4BPMN (Quality for BPMN) 



• We identified three main concerns representing the different 

contexts of the quality requirements: 

• Software System: quality attributes quantifying either the behavior 

of software components, or their interactions; 

• Human–Computer Interaction: quality attributes quantifying any 

interactions between a human and any part of the considered 

software system; 

• Business Activities: quality attributes quantifying the admissible 

constraint used in order to characterize the activities of both the 

whole system (i.e. software + human related activities), and its 

actors from a business perspective. 

 

Q4BPMN (Quality for BPMN) 



Mapping values 

• Some examples from the 
taxi management scenario 



Q4BPMN (Quality for BPMN) Example 



Software monitors from Q4BPMN 

• Q4BPMN enables us to map quality requirements into monitorable 

properties on a choreography model, a task, participants in a task 

• Generated monitoring module determines whether a property 

associated to a quality requirement is satisfied using observed data 

and messages. 

• The approach uses event-based monitor includes a complex event-

processing engine based on Drools Fusion. 

• E.g. Latency property 

– e1 event starts incomingRequest, and finishes with 

outgoingResponse event 

– Rules monitor the completion of events and calculate average 

completion times. 



• Expressing requirements 

– 97 requirements successfully specified and used to generate 

meaningful first-cut choreography diagrams. 

– Secondary qualities not used in practice. 

• Clustering requirements 

– Natural language processing on similarity algorithm took too long 

(over 5 minutes per invocation on the requirements set) 

– Matrix a solution? 

• Retrieving task models for draft BPMN model 

– Varying success on CTT models to draft BPMN. Need to expand 

catalogue and evaluate the effectiveness in further studies. 

Lessons Learned (1) 



• Mapping requirements to choreography tasks 

– In our example, 38 out of the 40 clustered requirements were 

automatically mapped to choreography tasks and provided a 

useful starting point for the user. 

– Mapping issues however. Mapped to CTT model, not individual 

choreography tasks 

– Requirements granularity issues – high level requirements over 

several tasks vs low level requirements. 

– NFR0077: The user shall be able to use the taxi booking 

system efficiently mapped across 5 choreography tasks 

– Need decomposition and requirements trace. Via Satisfaction 

Arguments? 

Lessons Learned (2) 



• Reconciling the user expressed quality scores with actual values for 

the quality properties – a big challenge. 

– Tried to use values from literature but wasn’t too successful. 

– A lot of input from domain experts needed. Ultimately those with 

knowledge of the taxi domain set the values. 

• Integration of tools 

– Successful in a forwards process, with trace to the original 

requirements but... 

– no backwards compatibility between MD and the requirements 

tool – reduces the usefulness of the tool support. 

• No need for dedicated IT professionals to provide the skills needed 

for architectural design and software engineering? – yes and no 

 

Lessons Learned (3) 



• End-to-end approach for generating service-based systems that can 

be traced to their originating requirements 

• Integrated toolkit based on BPMN modelling in MagicDraw 

• Task models provide domain knowledge and functional constraints 

for choreography design 

• QoS – quality requirements that are not measurable are mapped to 

measurable, and thus monitorable, non-functional properties 

(Q4BPMN profile) 

• Future work? 

– Address lesson learned 

– Further application to new case studies 

 

Conclusion 


