
From requirements to project effort

estimates – work in progress (still?)

Charles Symons
Founder & Past President, The Common Software Measurement

International Consortium

Cigdem Gencel
Assistant professor and senior researcher at the Faculty of Computer

Science of the Free University of Bolzano, Italy

REFSQ Conference , Essen, Germany , April 2013

© Symons, Gencel 2013

Agenda

• Estimating: the issues

• How can we improve the early estimation of
project effort from requirements?

• What about Non-Functional Requirements?

• Conclusions for Requirements Engineers

2

Software industry delivery to time

and budget is notoriously bad

3

Failed

>10% over budget

Successful

>10% over budget

‘Successful’

Standish

CHAOS study

2009 1

European

Union Study

‘98 – ‘05 2

UK Public

Sector Study

2007 3

ISBSG Study

2013 4

The cost of these over-runs and failures

(all to the Customers) is a scandal

4

Annual cost of failures and over-runs:

• US market (Standish) ~100 Billion US$

• European market ~100 Billion €

The ‘world-class’ software suppliers’

profit margins on the UK contracts3: 10 – 20+ %

Study No. of Cost Over-runs/

Country Projects Write-offs

UK Public Sect. 4 105 £ 29B £ 9B (31%)

Mostly US 5 1471 $ 246B $ 66B (27%)

Why do we get this poor delivery to

time and budget?

Studies repeatedly show:

• Incomplete and changing requirements

• Poor estimating

• Project management failures

• etc

..... in spite of >20 years of process

improvement !

5

The estimating ‘cone of uncertainty’ is too

wide, especially early in a project life

6

Feas-

ibility

Require-

ments

Design Build &

Unit Test

System

Test
Implement

Indicative

uncertainty

(+/-) in

whole

project

effort

estimate

> x 2?

< x 0.5?
Executives want more certainty

before making significant

investments

Requirements uncertain.

Estimating methods poor.

Agenda

• Estimating: the issues

• How can we improve early estimation of project
effort from requirements?

• What about Non-Functional Requirements?

• Conclusions for Requirements Engineers

7

Most project estimating still relies on

informal methods 6

• Expert judgement, estimating by analogy

• Use of benchmark data (e.g. ISBSG 7)

• Open estimating method (e.g. COCOMO 8)

• Black box commercial estimating tools

8

Most common,

Least data

Least common,

Most data

(Ideas in this paper are relevant to all

types of estimating methods)

Software ‘product size’ is the biggest

driver of project effort

9

ISBSG

Estimating
Effort = Functional Size / Productivity

COCOMO

II

Estimating

Effort = [Physical Size (SLOC)] N x
‘Cost

Drivers’

Commercial

Estimating

Tools
fn Effort = [Physical Size (SLOC)] x

‘Cost

Drivers’

(?)

Should

account

for NFR

Many methods and ‘routes’ are used to

estimate size, then effort, early in a project

10

Counts
(e.g. of

Use Cases,

User Stories)

IFPUG

FP’s*

COSMIC

CFP’s*

SLOC

COCOMO

&

Commercial

Tools

ISBSG

Increasing requirements detail

Approx.

CFP’s

Approx.

FP’s

*ISO Standard

FSM Methods

Effort

Estimating

Every conversion from one size-type to

another, or to effort, adds to uncertainty

‘Error propagation’ arises due to 9:

• Intrinsic differences between the input and

output variables (e.g. two size-types) so they

do not correlate well

• Errors in measurement of the input(s) to the

conversion

• Increasing the number of variables and

algorithmic complexity of the conversion
(In principle, the more variables we add to the conversion formula,

the greater the accuracy, but the more sources of input

measurement errors, resulting in greater error propagation.)
11

FSM methods can measure a functional

size of requirements as they evolve

IFPUG (Albrecht)

• 1970’s empirical model

• Business applications

• Counts ‘elementary

processes’ and ‘files’

• Limited size range of

processes and files

• Most widely used

COSMIC

• Fundamental SE Principles

• Business, real-time &

infrastructure software

• Measures ‘functional

processes’

• No size limit on functional

processes

• Rapidly increasing usage

12

For now, think of IFPUG sizing as a less well-defined

and approximate version of COSMIC sizing.

Use Case sizes vary enormously. Conversion

to a functional size is only possible locally

13

UC No # of Trans. FP (Trans. Size) CFP CFP / FP
UC1 1 6 27 4.5
UC2 1 7 25 3.6
UC3 1 6 29 4.8
UC4 3 16 46 2.9
UC5 1 6 30 5.0
UC6 1 6 28 4.7
UC7 9 44 112 2.5
UC8 9 59 122 2.1
UC9 2 12 52 4.3
UC10 2 9 25 2.8
UC11 1 6 30 5.0
UC12 15 88 267 3.0
UC13 10 51 113 2.2
UC14 5 17 24 1.4
UC15 1 6 10 1.7

	

	
	

UC	No	 # Trans. FP	(Trans.Size)	 CFP	 CFP/FP	

UC1	 1 7	 22	 3.1	

UC2	 1 7	 13	 1.9	

UC3	 1 7	 15	 2.1	

UC4	 1 7	 25	 3.6	

UC5	 1 7	 17	 2.4	

UC6	 1 7	 14	 2.0	

UC10	 1 7	 13	 1.9	

UC11	 1 7	 18	 2.6	

UC12	 1 7	 14	 2.0	

UC13	 1 7	 20	 2.9	

UC14	 1 6	 17	 2.8	

UC15	 1 7	 10	 1.4	

UC16	 1 7	 17	 2.4	

UC17	 1 7	 15	 2.1	

UC25	 4 24	 32	 1.3	
UC26	 4 13	 16	 1.2	
UC27	 1 6	 8	 1.3	
UC28	 4 12	 17	 1.4	

Company A – Project Type: I Company A - Project Type: II

Different project types may

have different:

- # of Transactions / UC

- Average size / UC

Conclusions for users of UML and for

‘Agilistas’ wanting to estimate total size

• Learn how FSM methods define a ‘transaction’*

• When analyzing requirements, determine the number

of transactions in each Use Case or User Story

• Then either use an average functional size of each

transaction for:

• or use a more sophisticated approximate FSM method

e.g. with an average transaction size per ‘size band’,

14

Total size = (No. transactions) x (Av. size per transaction)

‘transaction’ = IFPUG ‘elementary process’ or

COSMIC ‘functional process’

Several factors should be considered to get a

smooth functional size/effort relationship

15

Functional Profile

Hi Functional similarity Low

Read/List DB accesses Cr/Update/Del

Gather data Hardware accesses Control

Low Maths/logic processing High

 None Interfaces Many

Low effort High effort Relative project effort

(How to quantify?)

All we know about FS:SLOC conversion

tells us that it is very unreliable

Functional Sizes

• A measure of functional

requirements; ignores NFR

 International standards

 Technology-independent

• Measurement results show

an economy of scale with

increasing software size (up

to ~2000 FP)

SLOC Sizes

• A designer’s view of size;

implements NFR

x No reliable standards

x Technology-dependent

• Measurement results

show a dis-economy of

scale with increasing

software size (up to 1M

SLOC)

16

There is little published evidence to support

claimed FP/SLOC conversion ratios for various

programming languages

Results confirm that CFP and SLOC sizes do

not correlate well (neither do FP and SLOC)

17

of

Comp.

SLOC / CFP

Min Med Max Std. Dev.

15 9.2 26.1 65.8 15.8

Prog.

Lang.

of

Projects

SLOC / CFP

Min Med Max Std. Dev.

C++ 14 2.95 6.03 20.6 6.04

Software components – one

automotive company 10
Software projects (new) –

ISBSG Dataset

Using COCOMO II to estimating effort

from SLOC also has intrinsic difficulties

x Difficult to estimate from

requirements

x No reliable standards

x Technology-dependent

x A designer’s view of

size

 Implement all

requirements, incl. NFR

x A complex model with

up to 17 variables

x Calibrated by expert

judgment from a limited

range of projects

 But ‘open’ and widely

used with local

calibration

18

SLOC Sizes COCOMO II Effort

Even best case assumptions show significant

uncertainty on any one conversion

19 19

Counts
(e.g. of

Use Cases

User Stories)

IFPUG

FP’s

COSMIC

CFP’s

SLOC

COCOMO

&

Commercial

Tools

ISBSG

Approx.

CFP’s

Approx.

FP’s

±10%

±10%

±32%

±37%

±14%

±14%

Assume size = 1000 ± 100 CFP

Effort

Estimating

If your process involves multiple conversions,

expect major error propagation

20

IFPUG

FP’s

COSMIC

CFP’s

SLOC Estimating

Tool

±31%

±49%
±43%

Beware of estimating tools

that:

• accept CFP sizes as input

• convert 1:1 to FP

• convert FP to SLOC and

then to effort

Assume 1000 ± 100 CFP

Conclusion: estimating methods should be

calibrated directly with functional sizes

21

IFPUG

FP’s

COSMIC

CFP’s

COCOMO

&

Commercial

Estimating

Tools

ISBSG

Estimating

Approx.

CFP’s

Approx.

FP’s

(For very early

requirements)

Conclusions from this section

• Do not rely on CFP:FP or on FP:SLOC conversion for

estimating

• Segment the project types that recur frequently in your

organization. Then, for each project type:

• Adapt your own very early sizing methods, e.g.

– ‘counts’ of Use Cases (UCP) or User Stories (USP)

– and/or approximate FSM methods

• Calibrate your estimating method or tool:

– with your own data on software functional size,

functional profile and other project attributes

– using as few variables as possible to achieve the

desired accuracy
22

Agenda

• Estimating: the issues

• How can we improve early estimation of project
effort from requirements?

• What about Non-Functional Requirements?

• Conclusions for Requirements Engineers

23

Whether we use our own or public data, we

need consistent measures across four fields

24

Performance

Measurement Estimating

Benchmarking

Project

Data

System &

Project Reqts.

We can measure software size consistently

across our four fields

.... but what about all the other data we

could gather (> 100 possible variables)?

• Effort and schedule data (not easy!)

• NFR – whatever they are?

25

Let’s start with a simple distinction between

Functional (FR) and Non-Functional

Requirements (NFR)

26

Requirements

Non-Functional

Requirements

Functional

Requirements
“What the software

must do”

All other requirements

on the system (and the

project?)

We must consider NF ‘constraints’

as well as ‘requirements’

27

Constraints e.g.

• inexperienced team

• uncertain requirements

(NF) Requirements
e.g. must:

• use C#

• use existing COTS

• high availability

We must record

NFR and

constraints to help

interpret

performance

measures &

benchmark data,

and for estimation

purposes

Also, we need to distinguish what the

‘requirements’ (incl. constraints) apply to

28

Software

Technology

Other

Deliverables

System

Project

Requirements can apply to any of these things

NFR vary enormously in importance

between different types of systems

29

Typical Business

Application

• NFR do not vary much

across many systems

• Many may cause the

same % effort overhead

for similar projects(?)

Mission Critical System

(e.g. air traffic control,

trading systems, etc)

• “NFR can account for

half the pages of a

statement of

requirements” 11

vs.

ISBSG Estimating OK? Segment project types on

NFR for more accurate

estimates (cf COCOMO)

So what do we really mean by ‘NFR’?

ISO/IEC definitions12 are really bad

Functional Requirement: “A requirement that specifies a

function that a system or system component must be

able to perform”

30

 Function:: “A task, action, or activity that must be

accomplished to achieve a desired outcome”

Non-functional requirement: “A software requirement that

describes not what the software will do but how the

software will do it.”
Example: software performance requirements, software external interface

requirements, software design constraints, and software quality attributes.

Note: Non-functional requirements are sometimes difficult to test, so they

are usually evaluated subjectively.

Wikipedia definitions are totally useless

31

“Functional requirements define what a system is

supposed to do whereas non-functional requirements

define how a system is supposed to be”

So let’s take an example requirement: ‘Security’

‘The system is required to ensure security against

unauthorised access” (Functional?)

or

“The system is required to be secure against

unauthorized access” (Non-Functional?)

Many requirements that initially appear as

NFR evolve to software FR12

32

Functional

Requirements

Non-Functional

Requirements

Examples:

• Maintainability

• Interfaces

• Operations

• Reliability

• Usability

• etc

Functional

Requirements

‘True’ NFR e.g.

• Technology

• Project &

performance

constraints

Project time-line

Can be sized

Should be

recorded;

may be

quantifiable

Abran/Al Sarayreh’s findings are endorsed by

Butcher 11 for Mission-Critical Systems

“Most Non-Functional Requirements evolve into

requirements for software functionality and

for hardware”

“I prefer to distinguish ‘direct’ and ‘indirect’

functional requirements”

33

I found 108 possible types of NFR.

Their usage is grossly inconsistent 14

34

common NFR’s?

“Interfaces”

NFR Recording
IEEE 804, ISO 9126, Wiki

50 NFR’s

NFR Sizing

VAF/TCA & SNAP

36 NFR’s

Benchmarking

ISBSG & SEI

48 NFR’s

Project Estimating

(COCOMO II)

39 NFR’s

Summary so far

Industry understanding of NFR is chaotic

• There is no clear accepted definition of NFR.

 ISO/IEC definitions are actually harmful

• Many NFR that are important for estimating

evolve into functional requirements as a

project progresses

• Approaches to performance measurement,

benchmarking and estimating use largely

different sets of NFR and constraints

35

Now some ideas on the way forward - real WIP!

Assume the COSMIC definition for a

‘Non-Functional Requirement’

36

NFR = ‘Any requirement for or constraint

• on a hardware/software system

• or on a project* to develop or maintain such a system,

except:

• a functional user requirement** for software

• or a requirement that evolves into a functional user

requirement for software’

*If you prefer to define ‘project requirements’ separately from NFR,

that’s OK by us

** ‘Functional user requirements’ is quite well defined in ISO/IEC

14143/1

Divide ‘traditional’ NFR into ‘Quasi NFR’

and ‘True NFR”

Quasi NFR (34): requirements that may evolve

wholly or partly into FUR e.g. usability,

interfaces, security

True NFR: requirements ... that cannot be

implemented as software functions

• Software Constraints (10): e.g. must use C#,

execute in batch mode

• Technology Constraints (16), e.g. must run on

Unix, use data communications

• System Constraints(9), e.g. response time, no.

of users

• ‘Project Constraints (35)’, e.g. budget ≤ $1M,

multi-site teams

• ‘Other (System) Deliverables (4)’, e.g.

documentation, training 37

Measure

their FS

Record and

take into

account in

software project

performance

measurement,

benchmarking,

& estimating

 Treat separately

Rationalise NFR to a manageable set that can

be recorded with performance measurements

for their interpretation and use

38

Example: Only 9 of 34 Quasi NFR’s need be recorded

No./Type

16 x Common

9 x Common

2 x common for

all systems

2 x very

uncommon

5 x Synonyms

or sub-types

Examples

Usability, Reporting

Availability, interfaces

Auditability

Emotional factors

Reliability, resilience

Proposed Action

Can be 100% accounted for in

the FS; no need to record?

Measure the FS and record on

a nominal or ratio scale

Ignore (common overhead)

Ignore

Account for in the above

The biggest need: reconcile data

recording for benchmarking with data

needed for estimating

Data needed for estimating /

not considered in

benchmarking (?)

• Project Risk

• Project resource or time

constraints

Possible solution for

benchmark data?

• A ‘Relative Risk’ Index’?

• Minimum: record the

constraints

 Ideal: a means of analysing

project data to quantify the

effect of such constraints

39

... And do not record data for benchmarking studies that

is never used for interpretation, nor for estimating

The ‘still-to-do’ list

• Refine and define the taxonomy of NFR’s

and measurement scales where possible

• Test with a range of experts

• Publish and publicise

• Promote the ideas to suppliers of

benchmarking services and estimating

methods

40

Please contact Chris Woodward of the UK Software

Metrics Association if you would like to help with this

approach chris.woodward@btinternet.com

mailto:chris.woodward@btinternet.com

Agenda

• Estimating: the issues

• How can we improve the early estimation of
project effort from requirements?

• What about Non-Functional Requirements?

• Conclusions for Requirements Engineers

41

Conclusion: early estimating is enormously

important. It must be improved

Obvious areas for improvement:

• Recognise the real problems of conversion

between size measurements and of error

propagation in estimating

• Improve the consistency of data collected for

performance measurement and benchmarking,

and data needed for estimating

• NFR must be better defined and understood

42

Requirements Engineers can do a lot

to support better estimating

• Distinguish all requirements (‘direct’ & ‘indirect’) that

can be implemented in software

• Document these requirements to facilitate functional

size measurement (first, understand FSM!)

• Support the development of a standard taxonomy of

‘true’ NFR’s

• Record software, hardware, system and project ‘true’

NFR’s using a standard taxonomy

The framework presented here is still work-in-progress;

there is a lot to do!

43

Final remark: measurement is not an

overhead

As this is a ‘Requirements Engineering for

Software Quality’ conference, please consider:

– Measurement is intrinsic to any engineering

discipline

– Functional size measurement provides a

quality control on the requirements

If software requirements cannot be measured

with some confidence, you cannot begin to

estimate the project or build the software reliably

44

45

Thank you for your

attention

Charles Symons

cr.symons@btinternet.com

www.cosmicon.com

Cigdem Gencel

cigdem.gencel@unibz.it

mailto:cr.symons@btinternet.com
http://www.cosmicon.com/
mailto:cigdem.gencel@unibz.it

References (1)

46

1. Standish CHAOS Report, 2009,

www.standishgroup.com/newsroom/chaos_2009.php

2. McManus, J. and Wood-Harper, T., ‘A Study in Project Failure’, www.bcs.org June

2008

3. Whitfield, D., ‘Cost over-runs, delays and terminations: 105 outsourced public

sector ICT projects’, European Services Strategy Unit, Research Report No. 3,

December 2007

4. ‘Are We Really That Bad? A look at software estimation accuracy Hill, P., ISBSG,

CAI webinar, February 2013, www.ITMPI.org/library

5.‘Why your IT project may be riskier than you think’ Bent Flyvbjerg, Alexander

Budzier, Harvard Business Review, September 2011

6. ‘A review of studies on expert estimation of software development effort’,

Jørgensen, M., The Journal of Systems & Software 70 (2004), 37 – 60.

7. ‘Practical Software Project Estimation’, the International Software Benchmarking

Standards Group, Peter Hill (Ed.), McGraw Hill, ISBN 978-0-07-171791-5, 2011

8. ‘Software Cost Estimation with COCOMO II’, Boehm, B. et al, Englewood Cliffs,

NJ:Prentice-Hall, 2000. ISBN 0-13-026692-2

9. Santillo, L., ‘Error Propagation in Software Measurement and Estimation’, 16th

International Workshop on Software Measurement, Potsdam, Germany, 2006

(continued)

http://www.standishgroup.com/newsroom/chaos_2009.php
http://www.bcs.org/
http://www.itmpi.org/library
http://en.wikipedia.org/wiki/Special:BookSources/0130266922
http://en.wikipedia.org/wiki/Special:BookSources/0130266922
http://en.wikipedia.org/wiki/Special:BookSources/0130266922
http://en.wikipedia.org/wiki/Special:BookSources/0130266922
http://en.wikipedia.org/wiki/Special:BookSources/0130266922
http://en.wikipedia.org/wiki/Special:BookSources/0130266922
http://en.wikipedia.org/wiki/Special:BookSources/0130266922

References (2)

47

10. Gencel, C., Heldal, R., Lind, K.: On the Relationship between Different Size

Measures in the Software Life Cycle. Asia-Pacific Software Engineering

Conference (APSEC 2009), p.19-26, Malaysia, December 2009

11. Butcher, C., ‘Delivering Mission-Critical Systems’, BCS Central London

Branch meeting 18th November 2010

12. *ISO/IEC. 24765:2009. ‘Systems and Software Engineering Vocabulary’

13. (Example paper) Al-Sarayreh, K.T. and Abran, ‘A. Specification and

Measurement of System Configuration Non Functional Requirements, 20th

International Workshop on Software Measurement (IWSM 2010), Stuttgart,

Germany, 2010

14. Symons, C., ‘Accounting for Non-Functional Requirements in Productivity

Measurement, Benchmarking & Estimating’, UKSMA/COSMIC International

Conference on Software Metrics & Estimating, London, October 2011 ,

www.uksma.co.uk

Information on the COSMIC method and its uses is available for free download

from www.cosmicon.com

http://www.uksma.co.uk/
http://www.cosmicon.com/

